Adrian, R. J., Meinhart, C. D. & Tomkins, C. D.
2000
Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech.
422, 1–54.

del Álamo, J. C. & Jiménez, J.
2009
Estimation of turbulent convection velocities and corrections to Taylor’s approximation. J. Fluid Mech.
640, 5–26.

Allen, J. J., Shockling, M. A., Kunkel, G. J. & Smits, A. J.
2007
Turbulent flow in smooth and rough pipes. Phil. Trans. R. Soc. Lond. A
365 (1852), 699–714.

Anderson, W., Barros, J. M., Christensen, K. T. & Awasthi, A.
2015
Numerical and experimental study of mechanisms responsible for turbulent secondary flows in boundary layer flows over spanwise heterogeneous roughness. J. Fluid Mech.
768, 316–347.

Baars, W. J., Squire, D. T., Talluru, K. M., Abbassi, M. R., Hutchins, N. & Marusic, I.
2016
Wall-drag measurements of smooth- and rough-wall turbulent boundary layers using a floating element. Exp. Fluids
57 (90), 1–16.

Bandyopadhyay, P. R.
1987
Rough-wall turbulent boundary layers in the transition regime. J. Fluid Mech.
180, 231–266.

Barros, J. M. & Christensen, K. T.
2014
Observations of turbulent secondary flows in a rough-wall boundary layer. J. Fluid Mech.
748, R1.

Cenedese, A., Romano, G. P. & Di Felice, F.
1991
Experimental testing of Taylor’s hypothesis by LDA in highly turbulent flow. Exp. Fluids
11 (6), 351–358.

Chung, D. & McKeon, B. J.
2010
Large-eddy simulation of large-scale structures in long channel flow. J. Fluid Mech.
661, 341–364.

Chung, D., Monty, J. P. & Ooi, A.
2014
An idealised assessment of Townsend’s outer-layer similarity hypothesis for wall turbulence. J. Fluid Mech.
742, R3.

Dennis, D. J. C. & Nickels, T. B.
2008
On the limitations of Taylor’s hypothesis in constructing long structures in a turbulent boundary layer. J. Fluid Mech.
614, 197–206.

Foss, J. & Haw, R.
1990
Transverse vorticity measurements using a compact array of four sensors. T. Heuris. Therm. Anemom.
97, 71–76.

Foucaut, J., Carlier, J. & Stanislas, M.
2004
PIV optimization for the study of turbulent flow using spectral analysis. Meas. Sci. Technol.
15 (6), 1046.

Geng, C., He, G., Wang, Y., Xu, C., Lozano-Durán, A. & Wallace, J. M.
2015
Taylor’s hypothesis in turbulent channel flow considered using a transport equation analysis. Phys. Fluids
27 (2), 025111.

Grass, A. J.
1971
Structural features of turbulent flow over smooth and rough boundaries. J. Fluid Mech.
50 (02), 233–255.

Higgins, C. W., Froidevaux, M., Simeonov, V., Vercauteren, N., Barry, C. & Parlange, M. B.
2012
The effect of scale on the applicability of Taylor’s frozen turbulence hypothesis in the atmospheric boundary layer. Boundary-Layer Meteorol.
143 (2), 379–391.

Hutchins, N. & Marusic, I.
2007
Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech.
579, 1–28.

Hutchins, N., Nickels, T. B., Marusic, I. & Chong, M. S.
2009
Hot-wire spatial resolution issues in wall-bounded turbulence. J. Fluid Mech.
635, 103–136.

Jackson, P. S.
1981
On the displacement height in the logarithmic velocity profile. J. Fluid Mech.
111, 15–25.

Kaimal, J. C., Eversole, R. A., Lenschow, D. H., Stankov, B. B., Kahn, P. H. & Businger, J. A.
1982
Spectral characteristics of the convective boundary layer over uneven terrain. J. Atmos. Sci.
39 (5), 1098–1114.

Kaimal, J. C., Wyngaard, J. C., Izumi, Y. & Coté, O. R.
1972
Spectral characteristics of surface-layer turbulence. Q. J. R. Meteorol. Soc.
98 (417), 563–589.

de Kat, R. & Ganapathisubramani, B.
2015
Frequency–wavenumber mapping in turbulent shear flows. J. Fluid Mech.
783, 166–190.

Krogstad, P.-Å & Antonia, R. A.
1994
Structure of turbulent boundary layers on smooth and rough walls. J. Fluid Mech.
277, 1–21.

Krogstad, P.-Å & Antonia, R. A.
1999
Surface roughness effects in turbulent boundary layers. Exp. Fluids
27 (5), 450–460.

Krogstad, P.-Å, Antonia, R. A. & Browne, L. W. B.
1992
Comparison between rough-and smooth-wall turbulent boundary layers. J. Fluid Mech.
245, 599–617.

Kunkel, G. J., Allen, J. J. & Smits, A. J
2007
Further support for Townsend’s Reynolds number similarity hypothesis in high Reynolds number rough-wall pipe flow. Phys. Fluids
19 (5), 055109.

Lee, S., Lele, S. K. & Moin, P.
1992
Simulation of spatially evolving turbulence and the applicability of Taylor’s hypothesis in compressible flow. Phys. Fluids A
4 (7), 1521–1530.

Lin, C. C.
1953
On Taylor’s hypothesis and the acceleration terms in the Navier–Stokes equation. Q. Appl. Maths
10 (4), 295–306.

Lumley, J. L.
1965
Interpretation of time spectra measured in high-intensity shear flows. Phys. Fluids
8 (6), 1056–1062.

McKeon, B. J. & Sharma, A. S.
2010
A critical-layer framework for turbulent pipe flow. J. Fluid Mech.
658, 336–382.

Mehdi, F., Klewicki, J. C. & White, C. M.
2013
Mean force structure and its scaling in rough-wall turbulent boundary layers. J. Fluid Mech.
731, 682–712.

Monty, J. P., Allen, J. J., Lien, K. & Chong, M. S.
2011
Modification of the large-scale features of high Reynolds number wall turbulence by passive surface obtrusions. Exp. Fluids
51 (6), 1755–1763.

Monty, J. P. & Chong, M. S.
2009
Turbulent channel flow: comparison of streamwise velocity data from experiments and direct numerical simulation. J. Fluid Mech.
633, 461–474.

Morrill-Winter, C., Klewicki, J., Baidya, R. & Marusic, I.
2015
Temporally optimized spanwise vorticity sensor measurements in turbulent boundary layers. Exp. Fluids
56 (12), 1–14.

Morrill-Winter, C., Squire, D. T., Klewicki, J. C., Hutchins, N., Schultz, M. P. & Marusic, I.(2016) Turbulent stress behaviours in boundary layers over sandpaper roughness (In preparation).

Nickels, T. B., Marusic, I., Hafez, S. & Chong, M. S.
2005
Evidence of the *k*-1 law in a high-Reynolds-number turbulent boundary layer. Phys. Rev. Lett.
95 (7), 074501.

Nickels, T. B., Marusic, I., Hafez, S., Hutchins, N. & Chong, M. S.
2007
Some predictions of the attached eddy model for a high Reynolds number boundary layer. Phil. Trans. R. Soc. Lond. A
365 (1852), 807–822.

Nikuradse, J.
1933
Laws of flow in rough pipes. NASA Tech. Memo.
1292.

Perry, A. E., Henbest, S. & Chong, M. S.
1986
A theoretical and experimental study of wall turbulence. J. Fluid Mech.
165, 163–199.

Perry, A. E. & Li, J. D.
1990
Experimental support for the attached-eddy hypothesis in zero-pressure-gradient turbulent boundary layers. J. Fluid Mech.
218, 405–438.

Philip, J., Baidya, R., Hutchins, N., Monty, J. P. & Marusic, I.
2013
Spatial averaging of streamwise and spanwise velocity measurements in wall-bounded turbulence using ∨- and ×-probes. Meas. Sci. Technol.
24 (11), 115302.

Raupach, M. R., Antonia, R. A. & Rajagopalan, S.
1991
Rough-wall turbulent boundary layers. Appl. Mech. Rev.
44 (1), 1–25.

Romano, G. P.
1995
Analysis of two-point velocity measurements in near-wall flows. Exp. Fluids
20 (2), 68–83.

Rosenberg, B. J., Hultmark, M., Vallikivi, M., Bailey, S. C. C. & Smits, A. J.
2013
Turbulence spectra in smooth-and rough-wall pipe flow at extreme Reynolds numbers. J. Fluid Mech.
731, 46–63.

Schultz, M. P. & Flack, K. A.
2007
The rough-wall turbulent boundary layer from the hydraulically smooth to the fully rough regime. J. Fluid Mech.
580, 381–405.

de Silva, C. M., Gnanamanickam, E. P., Atkinson, C., Buchmann, N. A., Hutchins, N., Soria, J. & Marusic, I.
2014
High spatial range velocity measurements in a high Reynolds number turbulent boundary layer. Phys. Fluids
26 (2), 025117.

Squire, D. T., Morrill-Winter, C., Hutchins, N., Schultz, M. P., Klewicki, J. C. & Marusic, I.
2016a
Comparison of turbulent boundary layers over smooth and rough surfaces up to high Reynolds numbers. J. Fluid Mech.
795, 210–240.

Squire, D. T., Morrill-Winter, C., Hutchins, N., Schultz, M. P., Klewicki, J. C. & Marusic, I.
2016b
Smooth-and rough-wall boundary layer structure from high spatial range particle image velocimetry. Phys. Rev. Fluids
1 (6), 064402.

Talluru, K. M., Baidya, R., Hutchins, N. & Marusic, I.
2014a
Amplitude modulation of all three velocity components in turbulent boundary layers. J. Fluid Mech.
746, R1.

Talluru, K. M., Kulandaivelu, V., Hutchins, N. & Marusic, I.
2014b
A calibration technique to correct sensor drift issues in hot-wire anemometry. Meas. Sci. Technol.
25 (10), 105304.

Taylor, G. I.
1938
The spectrum of turbulence. Proc. R. Soc. Lond. A
164, 476–490.

Townsend, A. A.
1956
The Structure of Turbulent Shear Flow, vol. 1. Cambridge University Press.

Vanderwel, C. & Ganapathisubramani, B.
2015
Effects of spanwise spacing on large-scale secondary flows in rough-wall turbulent boundary layers. J. Fluid Mech.
774, 1–12.

Volino, R. J., Schultz, M. P. & Flack, K. A.
2007
Turbulence structure in rough-and smooth-wall boundary layers. J. Fluid Mech.
592, 263–293.

Volino, R. J., Schultz, M. P. & Flack, K. A.
2011
Turbulence structure in boundary layers over periodic two-and three-dimensional roughness. J. Fluid Mech.
676, 172–190.

Wilczek, M., Stevens, R. J. A. M. & Meneveau, C.
2015
Spatio-temporal spectra in the logarithmic layer of wall turbulence: large-eddy simulations and simple models. J. Fluid Mech.
769, R1.

Wu, Y. & Christensen, K. T.
2010
Spatial structure of a turbulent boundary layer with irregular surface roughness. J. Fluid Mech.
655, 380–418.

Wyngaard, J. C.
1969
Spatial resolution of the vorticity meter and other hot-wire arrays. J. Phys. E: Sci. Instrum.
2 (11), 983.

Zaman, K. B. M. Q. & Hussain, A. K. M. F.
1981
Taylor hypothesis and large-scale coherent structures. J. Fluid Mech.
112, 379–396.