Skip to main content Accessibility help

Application of a model of internal hydraulic jumps

  • S. A. Thorpe (a1), J. Malarkey (a1), G. Voet (a2), M. H. Alford (a2), J. B. Girton (a3) and G. S. Carter (a4)...


A model devised by Thorpe & Li (J. Fluid Mech., vol. 758, 2014, pp. 94–120) that predicts the conditions in which stationary turbulent hydraulic jumps can occur in the flow of a continuously stratified layer over a horizontal rigid bottom is applied to, and its results compared with, observations made at several locations in the ocean. The model identifies two positions in the Samoan Passage at which hydraulic jumps should occur and where changes in the structure of the flow are indeed observed. The model predicts the amplitude of changes and the observed mode 2 form of the transitions. The predicted dissipation of turbulent kinetic energy is also consistent with observations. One location provides a particularly well-defined example of a persistent hydraulic jump. It takes the form of a 390 m thick and 3.7 km long mixing layer with frequent density inversions separated from the seabed by some 200 m of relatively rapidly moving dense water, thus revealing the previously unknown structure of an internal hydraulic jump in the deep ocean. Predictions in the Red Sea Outflow in the Gulf of Aden are relatively uncertain. Available data, and the model predictions, do not provide strong support for the existence of hydraulic jumps. In the Mediterranean Outflow, however, both model and data indicate the presence of a hydraulic jump.


Corresponding author

Email address for correspondence:


Hide All
Afanasyev, YA.D. & Peltier, W. R. 1998 The three-dimensionalization of stratified flows over two-dimensional topography. J. Atmos. Sci. 55, 1939.
Alford, M. H., Girton, J. B., Voet, G., Carter, G. S., Mickett, B. & Klymak, J. M. 2013 Turbulent mixing and hydraulic control of abyssal water in the Samoan Passage. Geophys. Res. Lett. 40, 46684674.
Armi, L. & Mayr, G. T. 2011 The descending stratified flow and hydraulic jump in the lee of the Sierras. J. Appl. Meteorol. Climatol. 50, 19952011.
Baines, P. G. 1995 Topographic Effects in Stratified Flows, p. 482. Cambridge University Press.
Baines, P. G. 2016 Internal hydraulic jumps in two-layer systems. J. Fluid Mech. 787, 115.
Doyle, J. D. & Durran, D. R. 2007 Rotor and subrotor dynamics in the lee of three-dimensional terrain. J. Atmos. Sci. 64, 42024221.
Farmer, D. M. & Armi, L. 1999 Stratified flow over topography: the role of small-scale entrainment and mixing in flow establishment. Proc. R. Soc. Lond. A 455, 32213258.
Fer, I., Lemmin, U. & Thorpe, S. A. 2002 Winter cascading of cold water in Lake Geneva. J. Geophys. Res. 107 (C6), doi:10.1029/2001JC000828.
Gasser, M., Pelegi, J. I., Nash, J. D., Peters, H. & Garcia-Lafuente, J. 2011 Topographic control on the nascent Mediterranean outflow. Geo.-Mar. Lett. 31, 301314.
Jagannathan, A., Winters, K. B. & Armi, L. 2017 Stability of stratified downslope flows with an overlying stagnant isolating layer. J. Fluid Mech. 810, 392411.
Lawrie, A. G. W. & Dalziel, S. B. 2011 Rayleigh–Taylor instability in an otherwise stable stratification. J. Fluid Mech. 688, 507527.
Miles, J. N. & Howard, L. N. 1963 Note on a heterogeneous shear flow. J. Fluid Mech. 20, 331336.
Nash, J. D., Peters, H., Kelly, S. M., Pelegri, J. L., Emelianov, M. & Gasser, M. 2012 Turbulence and high-frequency variability in a deep gravity current outflow. Geophys. Res. Lett. 39, L18611.
Ogden, K. A. & Helfich, K. R. 2016 Internal hydraulic jumps in two-layer flows with upstream shear. J. Fluid Mech. 789, 6492.
Peters, H. & Johns, W. E. 2005 Mixing and entrainment in the Red Sea outflow plume. Part II: turbulence characteristics. J. Phys. Oceanogr. 35, 584600.
Peters, H., Johns, W. E., Bower, A. S. & Fratantoni, D. M. 2005 Mixing and entrainment in the Red Sea outflow plume. Part I: plume structure. J. Phys. Oceanogr. 35, 569583.
Pettré, P. & André, J.-C. 1991 Surface pressure change through Loewe’s phenomena and katabatic flow jumps: study of two cases in Adélie Land, Antarctica. J. Atmos. Sci. 48, 557571.
Polzin, K., Speer, K. G., Toole, J. M. & Schmitt, R. W. 1996 Intense mixing of Antarctic Bottom Water in the equatorial Atlantic Ocean. Nature 380, 5456.
Rapp, R. J. & Melville, W. K. 1990 Laboratory measurements of deep water breaking waves. Phil. Trans. R. Soc. Lond. A 331, 735800.
Rottman, J. W., Broutman, D. & Grimshaw, R. 1996 Numerical simulations of uniformly stratified fluid flow over topography. J. Fluid Mech. 306, 130.
Scorer, R. S. 1955 The theory of airflow over mountains – IV. Separation of flow from the surface. Q. J. R. Meteorol. Soc. 81, 340350.
Scorer, R. 1972 Clouds of the World, p. 176. David & Charles.
Smyth, W. D., Moum, J. N. & Caldwell, D. R. 2001 The efficiency of mixing in turbulent patches: inferences from direct simulations and microstructure observations. J. Phys. Oceanogr. 31, 19691992.
Thorpe, S. A. 1973 Experiments on instability and turbulence in a stratified shear flow. J. Fluid Mech. 61, 731751.
Thorpe, S. A. 2010 Turbulent hydraulic jumps in a stratified shear flow. J. Fluid Mech. 654, 305350.
Thorpe, S. A. & Li, L. 2014 Turbulent hydraulic jumps in a stratified shear flow. Part 2. J. Fluid Mech. 758, 94120; (referred to as ‘TL’).
Voet, G., Alford, M. H., Girton, J. B., Carter, G. S., Mickett, J. B. & Klymak, J. M. 2016 Warming and weakening of the abyssal flow through the Samoan Passage. J. Phys. Oceanogr. 46, 23892401.
Voet, G., Girton, J. B., Alford, M. H., Carter, G. S., Klymak, J. M. & Mickett, J. B. 2015 Pathways, volume transport, and mixing of abyssal water in the Samoan Passage. J. Phys. Oceanogr. 45, 562588.
Winters, K. B. & Armi, L. 2014 Topographic control and stratified flows: upstream jets, blocking and isolating layers. J. Fluid Mech. 753, 80103.
Yakovenko, S. N., Thomas, T. G. & Castro, I. P. 2011 A turbulent patch arising from a breaking internal wave. J. Fluid Mech. 677, 103133.
Yakovenko, S. N., Thomas, T. G. & Castro, I. P. 2014 Transition through Rayleigh–Taylor instabilities in a breaking internal lee wave. J. Fluid Mech. 760, 466493.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed