Skip to main content
×
Home
    • Aa
    • Aa

Assessment and development of the gas kinetic boundary condition for the Boltzmann equation

  • Lei Wu (a1) and Henning Struchtrup (a2)
Abstract

Gas–surface interactions play important roles in internal rarefied gas flows, especially in micro-electro-mechanical systems with large surface area to volume ratios. Although great progress has been made to solve the Boltzmann equation, the gas kinetic boundary condition (BC) has not been well studied. Here we assess the accuracy of the Maxwell, Epstein and Cercignani–Lampis BCs, by comparing numerical results of the Boltzmann equation for the Lennard–Jones potential to experimental data on Poiseuille and thermal transpiration flows. The four experiments considered are: Ewart et al. (J. Fluid Mech., vol. 584, 2007, pp. 337–356), Rojas-Cárdenas et al. (Phys. Fluids, vol. 25, 2013, 072002) and Yamaguchi et al. (J. Fluid Mech., vol. 744, 2014, pp. 169–182; vol. 795, 2016, pp. 690–707), where the mass flow rates in Poiseuille and thermal transpiration flows are measured. This requires that the BC has the ability to tune the effective viscous and thermal slip coefficients to match the experimental data. Among the three BCs, the Epstein BC has more flexibility to adjust the two slip coefficients, and hence for most of the time it gives good agreement with the experimental measurements. However, like the Maxwell BC, the viscous slip coefficient in the Epstein BC cannot be smaller than unity but the Cercignani–Lampis BC can. Therefore, we propose to combine the Epstein and Cercignani–Lampis BCs to describe gas–surface interaction. Although the new BC contains six free parameters, our approximate analytical expressions for the viscous and thermal slip coefficients provide useful guidance to choose these parameters.

Copyright
Corresponding author
Email address for correspondence: lei.wu.100@strath.ac.uk
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

M. Barisik  & A. Beskok 2014 Scale effects in gas nano flows. Phys. Fluids 26, 052003.

M. Barisik  & A. Beskok 2016 ‘Law of the nano-wall’ in nano-channel gas flows. Microfluid Nanofluid 20, 46.

S. Brull , P. Charrier  & L. Mieussens 2016 Nanoscale roughness effect on Maxwell-like boundary conditions for the Boltzmann equation. Phys. Fluids 28, 082004.

C. Cercignani 1988 The Boltzmann Equation and its Applications. Springer.

C. Cercignani  & M. Lampis 1971 Kinetic models for gas-surface interactions. Transp. Theory Stat. Phys. 1, 101114.

O. I. Dodulad , Y. Y. Kloss , D. O. Savichkin  & F. G. Tcheremissine 2014 Knudsen pumps modeling with Lennard–Jones and ab initio intermolecular potentials. Vacuum 109, 360367.

O. I. Dodulad  & F. G. Tcheremissine 2013 Computation of a shock wave structure in monatomic gas with accuracy control. Comput. Math. Math. Phys. 53, 827844.

T. Edmonds  & J. P. Hobson 1965 A study of thermal transpiration using ultrahigh-vacuum techniques. J. Vac. Sci. Technol. 2, 182197.

M. Epstein 1967 A model of the wall boundary condition in kinetic theory. AIAA J. 5, 17971800.

T. Ewart , P. Perrier , I. A. Graur  & J. G. Méolans 2007 Mass flow rate measurements in a microchannel, from hydrodynamic to near free molecular regimes. J. Fluid Mech. 584, 337356.

A. Frezzotti  & L. Gibelli 2008 A kinetic model for fluid wall interaction. Proc. IMechE, Part C: J. Mech. Eng. Science 222, 787795.

M. Gad-el-Hak 1999 The fluid mechanics of microdevices – the Freeman Scholar lecture. J. Fluids Engng 121 (1), 533.

R. D. M. Garcia  & C. E. Siewert 2009 The linearized Boltzmann equation with Cercignani–Lampis boundary conditions: basic flow problems in a plane channel. Eur. J. Mech. (B/Fluids) 28, 387396.

I. A. Graur  & M. T. Ho 2014 Rarefied gas flow through a long rectangular channel of variable cross section. Vacuum 101, 328332.

K. Gu , C. B. Watkins  & J. Koplik 2001 Atomistic hybrid DSMC/NEMD method for nonequilibrium multiscale simulations. J. Comput. Phys. 229, 13811400.

N. G. Hadjiconstantinou , A. L. Garcia , M. Z. Bazant  & G. He 2003 Statistical error in particle simulations of hydrodynamic phenomena. J. Comput. Phys. 187, 274297.

T. Ishiyama , T. Yano  & S. Fujikawa 2005 Kinetic boundary condition at a vapor-liquid interface. Phys. Rev. Lett. 95, 084504.

T. Klinc  & I. Kuěčer 1972 Slip coefficients for general gas surface interaction. Phys. Fluids 15, 10181022.

M. Knudsen 1909 Die Gesetze der Molekularströmung und der inneren Reibungsströmung der Gase durch Röhren. Ann. Phys. 333, 75130.

M. Kon , K. Kobayashi  & M. Watanabe 2014 Method of determining kinetic boundary conditions in net evaporation/condensation. Phys. Fluids 26, 072003.

P. Kowalczyk , A. Palczewski , G. Russo  & Z. Walenta 2008 Numerical solutions of the Boltzmann equation: comparison of different algorithms. Eur. J. Mech. (B/Fluids) 27 (1), 6274.

T. Liang  & W. J. Ye 2014 An efficient hybrid DSMC/MD algorithm for accurate modeling of micro gas flows. Commun. Comput. Phys. 15, 246264.

S. K. Loyalka 1989 Temperature jump and thermal creep slip: rigid sphere gas. Phys. Fluids A 1, 403408.

S. K. Loyalka  & J. W. Cipolla 1971 Thermal creep slip with arbitrary accommodation at the surface. Phys. Fluids 14, 1656.

J. C. Maxwell 1879 On stresses in rarefied gases arising from inequalities of temperature. Phil. Trans. R. Soc. Lond. 170, 231256.

B. T. Porodnov , A. N. Kulev  & F. T. Tuchvetov 1978 Thermal transpiration in a circular capillary with a small temperature difference. J. Fluid Mech. 88, 609622.

B. T. Porodnov , P. E. Suetin , S. F. Borisov  & V. D. Akinshin 1974 Experimental investigation of rarefied gas flow in different channels. J. Fluid Mech. 64, 417437.

M. Rojas-Cárdenas , I. A. Graur , P. Perrier  & J. G. Méolans 2013 Time-dependent experimental analysis of a thermal transpiration rarefied gas flow. Phys. Fluids 25, 072002.

F. Sharipov 2002 Application of the Cercignani–Lampis scattering kernel to calculations of rarefied gas flows. I. Plane flow between two parallel plates. Eur. J. Mech. (B/Fluids) 21, 113123.

F. Sharipov 2003a Application of the Cercignani–Lampis scattering kernel to calculations of rarefied gas flows. II. Slip and jump coefficients. Eur. J. Mech. (B/Fluids) 22, 133143.

F. Sharipov 2003b Application of the Cercignani–Lampis scattering kernel to calculations of rarefied gas flows. III. Poiseuille flow and thermal creep through a long tube. Eur. J. Mech. (B/Fluids) 22, 145154.

F. Sharipov 2011 Data on the velocity slip and temperature jump on a gas-solid interface. J. Phys. Chem. Ref. Data 40, 023101.

F. Sharipov  & G. Bertoldo 2009a Numerical solution of the linearized Boltzmann equation for an arbitrary intermolecular potential. J. Comput. Phys. 228, 33453357.

F. Sharipov  & G. Bertoldo 2009b Poiseuille flow and thermal creep based on the Boltzmann equation with the Lennard–Jones potential over a wide range of the Knudsen number. Phys. Fluids 21, 067101.

F. Sharipov  & V. Seleznev 1994 Rarefied flow through a long tube at any pressure ratio. J. Vac. Sci. Technol. A 12, 29332935.

F. Sharipov  & J. L. Strapasson 2012 Direct simulation Monte Carlo method for an arbitrary intermolecular potential. Phys. Fluids 24, 011703.

F. Sharipov  & J. L. Strapasson 2014 Ab initio simulation of rarefied gas flow through a thin orifice. Vacuum 109, 246252.

C. E. Siewert 2003 Viscous-slip, thermal-slip, and temperature-jump coefficients as defined by the linearzied Boltzmann equation and the Cercignani–Lampis boundary condition. Phys. Fluids 15, 16961701.

J. L. Strapasson  & F. Sharipov 2014 Ab initio simulation of heat transfer through a mixture of rarefied gases. Intl J. Heat Mass Transfer 71, 9197.

H. Struchtrup 2013 Maxwell boundary condition and velocity dependent accommodation coefficient. Phys. Fluids 25, 112001.

S. Takata , S. Yasuda , S. Kosuge  & K. Aoki 2003 Numerical analysis of thermal-slip and diffusion-type flows of a binary mixture of hard-sphere molecular gases. Phys. Fluids 15, 37453766.

A. Venkattraman  & A. A. Alexeenko 2012 Binary scattering model for Lennard–Jones potential: transport coefficients and collision integrals for non-equilibrium gas flow simulations. Phys. Fluids 24, 027101.

D. S. Watvisave , B. P. Puranik  & U. V. Bhandarkar 2015 A hybrid MD-DSMC coupling method to investigate flow characteristics of micro-devices. J. Comput. Phys. 302, 603617.

A. B. Weaver , A. Venkattraman  & A. A. Alexeenko 2014 Effect of intermolecular potential on compressible Couette flow in slip and transitional regimes. Phys. Fluids 26, 107102.

L. Wu , H. H. Liu , Y. H. Zhang  & J. M. Reese 2015a Influence of intermolecular potentials on rarefied gas flows: fast spectral solutions of the Boltzmann equation. Phys. Fluids 27, 082002.

L. Wu , J. M. Reese  & Y. H. Zhang 2014 Solving the Boltzmann equation by the fast spectral method: application to microflows. J. Fluid Mech. 746, 5384.

L. Wu , C. White , T. J. Scanlon , J. M. Reese  & Y. H. Zhang 2013 Deterministic numerical solutions of the Boltzmann equation using the fast spectral method. J. Comput. Phys. 250, 2752.

L. Wu , J. Zhang , H. H. Liu , Y. H. Zhang  & J. M. Reese 2017 A fast iterative scheme for the linearized boltzmann equation. J. Comput. Phys. 338, 431451.

L. Wu , J. Zhang , J. M. Reese  & Y. H. Zhang 2015c A fast spectral method for the Boltzmann equation for monatomic gas mixtures. J. Comput. Phys. 298, 602621.

H. Yamaguchi , M. Rojas-Cárdenas , P. Perrier , I. Graur  & T. Niimi 2014 Thermal transpiration flow through a single rectangular channel. J. Fluid Mech. 744, 169182.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 2
Total number of PDF views: 91 *
Loading metrics...

Abstract views

Total abstract views: 113 *
Loading metrics...

* Views captured on Cambridge Core between 21st June 2017 - 19th August 2017. This data will be updated every 24 hours.