Barbante, P., Frezzotti, A. & Gibelli, L.
2015
A kinetic theory description of liquid menisci at the microscale. Kinet. Relat. Models
8, 235–254.

Barisik, M. & Beskok, A.
2014
Scale effects in gas nano flows. Phys. Fluids
26, 052003.

Barisik, M. & Beskok, A.
2016
‘Law of the nano-wall’ in nano-channel gas flows. Microfluid Nanofluid
20, 46.

Bird, G. A.
1994
Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford University Press.

Brull, S., Charrier, P. & Mieussens, L.
2016
Nanoscale roughness effect on Maxwell-like boundary conditions for the Boltzmann equation. Phys. Fluids
28, 082004.

Cercignani, C.
1971
Model for gas surface interaction: comparison between theory and experiments. In 7th International Symposium on Rarefied Gas Dynamics, vol. 1, pp. 75–79. Editrice Tecnico.

Cercignani, C.
1988
The Boltzmann Equation and its Applications. Springer.

Cercignani, C. & Lampis, M.
1971
Kinetic models for gas-surface interactions. Transp. Theory Stat. Phys.
1, 101–114.

Chapman, S. & Cowling, T. G.
1970
The Mathematical Theory of Non-uniform Gases. Cambridge University Press.

Dodulad, O. I., Kloss, Y. Y., Savichkin, D. O. & Tcheremissine, F. G.
2014
Knudsen pumps modeling with Lennard–Jones and *ab initio* intermolecular potentials. Vacuum
109, 360–367.

Dodulad, O. I. & Tcheremissine, F. G.
2013
Computation of a shock wave structure in monatomic gas with accuracy control. Comput. Math. Math. Phys.
53, 827–844.

Edmonds, T. & Hobson, J. P.
1965
A study of thermal transpiration using ultrahigh-vacuum techniques. J. Vac. Sci. Technol.
2, 182–197.

Epstein, M.
1967
A model of the wall boundary condition in kinetic theory. AIAA J.
5, 1797–1800.

Ewart, T., Perrier, P., Graur, I. A. & Méolans, J. G.
2007
Mass flow rate measurements in a microchannel, from hydrodynamic to near free molecular regimes. J. Fluid Mech.
584, 337–356.

Frezzotti, A. & Gibelli, L.
2008
A kinetic model for fluid wall interaction. Proc. IMechE, Part C: J. Mech. Eng. Science
222, 787–795.

Gad-el-Hak, M.
1999
The fluid mechanics of microdevices – the Freeman Scholar lecture. J. Fluids Engng
121 (1), 5–33.

Garcia, R. D. M. & Siewert, C. E.
2009
The linearized Boltzmann equation with Cercignani–Lampis boundary conditions: basic flow problems in a plane channel. Eur. J. Mech. (B/Fluids)
28, 387–396.

Graur, I. A. & Ho, M. T.
2014
Rarefied gas flow through a long rectangular channel of variable cross section. Vacuum
101, 328–332.

Gu, K., Watkins, C. B. & Koplik, J.
2001
Atomistic hybrid DSMC/NEMD method for nonequilibrium multiscale simulations. J. Comput. Phys.
229, 1381–1400.

Hadjiconstantinou, N. G., Garcia, A. L., Bazant, M. Z. & He, G.
2003
Statistical error in particle simulations of hydrodynamic phenomena. J. Comput. Phys.
187, 274–297.

Ishiyama, T., Yano, T. & Fujikawa, S.
2005
Kinetic boundary condition at a vapor-liquid interface. Phys. Rev. Lett.
95, 084504.

Karniadakis, G., Beskok, A. & Aluru, N.
2005
Microflows and Nanoflows: Fundamentals and Simulation. Springer.

Klinc, T. & Kuěčer, I.
1972
Slip coefficients for general gas surface interaction. Phys. Fluids
15, 1018–1022.

Knudsen, M.
1909
Die Gesetze der Molekularströmung und der inneren Reibungsströmung der Gase durch Röhren. Ann. Phys.
333, 75–130.

Kon, M., Kobayashi, K. & Watanabe, M.
2014
Method of determining kinetic boundary conditions in net evaporation/condensation. Phys. Fluids
26, 072003.

Kowalczyk, P., Palczewski, A., Russo, G. & Walenta, Z.
2008
Numerical solutions of the Boltzmann equation: comparison of different algorithms. Eur. J. Mech. (B/Fluids)
27 (1), 62–74.

Liang, T., Li, Q. & Ye, W. J.
2013
Performance evaluation of Maxwell and Cercignani–Lampis gas-wall interaction models in the modeling of thermally driven rarefied gas transport. Phys. Rev. E
88, 013009.

Liang, T. & Ye, W. J.
2014
An efficient hybrid DSMC/MD algorithm for accurate modeling of micro gas flows. Commun. Comput. Phys.
15, 246–264.

Loyalka, S. K.
1989
Temperature jump and thermal creep slip: rigid sphere gas. Phys. Fluids A
1, 403–408.

Loyalka, S. K. & Cipolla, J. W.
1971
Thermal creep slip with arbitrary accommodation at the surface. Phys. Fluids
14, 1656.

Maxwell, J. C.
1879
On stresses in rarefied gases arising from inequalities of temperature. Phil. Trans. R. Soc. Lond.
170, 231–256.

Porodnov, B. T., Kulev, A. N. & Tuchvetov, F. T.
1978
Thermal transpiration in a circular capillary with a small temperature difference. J. Fluid Mech.
88, 609–622.

Porodnov, B. T., Suetin, P. E., Borisov, S. F. & Akinshin, V. D.
1974
Experimental investigation of rarefied gas flow in different channels. J. Fluid Mech.
64, 417–437.

Rojas-Cárdenas, M., Graur, I. A., Perrier, P. & Méolans, J. G.
2013
Time-dependent experimental analysis of a thermal transpiration rarefied gas flow. Phys. Fluids
25, 072002.

Sharipov, F.
2002
Application of the Cercignani–Lampis scattering kernel to calculations of rarefied gas flows. I. Plane flow between two parallel plates. Eur. J. Mech. (B/Fluids)
21, 113–123.

Sharipov, F.
2003a
Application of the Cercignani–Lampis scattering kernel to calculations of rarefied gas flows. II. Slip and jump coefficients. Eur. J. Mech. (B/Fluids)
22, 133–143.

Sharipov, F.
2003b
Application of the Cercignani–Lampis scattering kernel to calculations of rarefied gas flows. III. Poiseuille flow and thermal creep through a long tube. Eur. J. Mech. (B/Fluids)
22, 145–154.

Sharipov, F.
2011
Data on the velocity slip and temperature jump on a gas-solid interface. J. Phys. Chem. Ref. Data
40, 023101.

Sharipov, F. & Bertoldo, G.
2009a
Numerical solution of the linearized Boltzmann equation for an arbitrary intermolecular potential. J. Comput. Phys.
228, 3345–3357.

Sharipov, F. & Bertoldo, G.
2009b
Poiseuille flow and thermal creep based on the Boltzmann equation with the Lennard–Jones potential over a wide range of the Knudsen number. Phys. Fluids
21, 067101.

Sharipov, F. & Seleznev, V.
1994
Rarefied flow through a long tube at any pressure ratio. J. Vac. Sci. Technol. A
12, 2933–2935.

Sharipov, F. & Strapasson, J. L.
2012
Direct simulation Monte Carlo method for an arbitrary intermolecular potential. Phys. Fluids
24, 011703.

Sharipov, F. & Strapasson, J. L.
2014
*Ab initio* simulation of rarefied gas flow through a thin orifice. Vacuum
109, 246–252.

Siewert, C. E.
2003
Viscous-slip, thermal-slip, and temperature-jump coefficients as defined by the linearzied Boltzmann equation and the Cercignani–Lampis boundary condition. Phys. Fluids
15, 1696–1701.

Strapasson, J. L. & Sharipov, F.
2014
*Ab initio* simulation of heat transfer through a mixture of rarefied gases. Intl J. Heat Mass Transfer
71, 91–97.

Struchtrup, H.
2013
Maxwell boundary condition and velocity dependent accommodation coefficient. Phys. Fluids
25, 112001.

Takata, S. & Funagane, H.
2011
Poiseuille and thermal transpiration flows of a highly rarefied gas: over-concentration in the velocity distribution function. J. Fluid Mech.
669, 242–259.

Takata, S., Yasuda, S., Kosuge, S. & Aoki, K.
2003
Numerical analysis of thermal-slip and diffusion-type flows of a binary mixture of hard-sphere molecular gases. Phys. Fluids
15, 3745–3766.

Venkattraman, A. & Alexeenko, A. A.
2012
Binary scattering model for Lennard–Jones potential: transport coefficients and collision integrals for non-equilibrium gas flow simulations. Phys. Fluids
24, 027101.

Watvisave, D. S., Puranik, B. P. & Bhandarkar, U. V.
2015
A hybrid MD-DSMC coupling method to investigate flow characteristics of micro-devices. J. Comput. Phys.
302, 603–617.

Weaver, A. B., Venkattraman, A. & Alexeenko, A. A.
2014
Effect of intermolecular potential on compressible Couette flow in slip and transitional regimes. Phys. Fluids
26, 107102.

Wu, L., Liu, H. H., Zhang, Y. H. & Reese, J. M.
2015a
Influence of intermolecular potentials on rarefied gas flows: fast spectral solutions of the Boltzmann equation. Phys. Fluids
27, 082002.

Wu, L., Reese, J. M. & Zhang, Y. H.
2014
Solving the Boltzmann equation by the fast spectral method: application to microflows. J. Fluid Mech.
746, 53–84.

Wu, L., White, C., Scanlon, T. J., Reese, J. M. & Zhang, Y. H.
2013
Deterministic numerical solutions of the Boltzmann equation using the fast spectral method. J. Comput. Phys.
250, 27–52.

Wu, L., White, C., Scanlon, T. J., Reese, J. M. & Zhang, Y. H.
2015b
A kinetic model of the Boltzmann equation for nonvibrating polyatomic gases. J. Fluid Mech.
763, 24–50.

Wu, L., Zhang, J., Liu, H. H., Zhang, Y. H. & Reese, J. M.
2017
A fast iterative scheme for the linearized boltzmann equation. J. Comput. Phys.
338, 431–451.

Wu, L., Zhang, J., Reese, J. M. & Zhang, Y. H.
2015c
A fast spectral method for the Boltzmann equation for monatomic gas mixtures. J. Comput. Phys.
298, 602–621.

Yamaguchi, H., Perrier, P., Ho, M. T., Méolans, J. G., Niimi, T. & Graur, I. A.
2016
Mass flow rate measurement of thermal creep flow from transitional to slip flow regime. J. Fluid Mech.
795, 690–707.

Yamaguchi, H., Rojas-Cárdenas, M., Perrier, P., Graur, I. & Niimi, T.
2014
Thermal transpiration flow through a single rectangular channel. J. Fluid Mech.
744, 169–182.