Skip to main content Accessibility help

Assessment and development of the gas kinetic boundary condition for the Boltzmann equation

  • Lei Wu (a1) and Henning Struchtrup (a2)


Gas–surface interactions play important roles in internal rarefied gas flows, especially in micro-electro-mechanical systems with large surface area to volume ratios. Although great progress has been made to solve the Boltzmann equation, the gas kinetic boundary condition (BC) has not been well studied. Here we assess the accuracy of the Maxwell, Epstein and Cercignani–Lampis BCs, by comparing numerical results of the Boltzmann equation for the Lennard–Jones potential to experimental data on Poiseuille and thermal transpiration flows. The four experiments considered are: Ewart et al. (J. Fluid Mech., vol. 584, 2007, pp. 337–356), Rojas-Cárdenas et al. (Phys. Fluids, vol. 25, 2013, 072002) and Yamaguchi et al. (J. Fluid Mech., vol. 744, 2014, pp. 169–182; vol. 795, 2016, pp. 690–707), where the mass flow rates in Poiseuille and thermal transpiration flows are measured. This requires that the BC has the ability to tune the effective viscous and thermal slip coefficients to match the experimental data. Among the three BCs, the Epstein BC has more flexibility to adjust the two slip coefficients, and hence for most of the time it gives good agreement with the experimental measurements. However, like the Maxwell BC, the viscous slip coefficient in the Epstein BC cannot be smaller than unity but the Cercignani–Lampis BC can. Therefore, we propose to combine the Epstein and Cercignani–Lampis BCs to describe gas–surface interaction. Although the new BC contains six free parameters, our approximate analytical expressions for the viscous and thermal slip coefficients provide useful guidance to choose these parameters.


Corresponding author

Email address for correspondence:


Hide All
Barbante, P., Frezzotti, A. & Gibelli, L. 2015 A kinetic theory description of liquid menisci at the microscale. Kinet. Relat. Models 8, 235254.
Barisik, M. & Beskok, A. 2014 Scale effects in gas nano flows. Phys. Fluids 26, 052003.
Barisik, M. & Beskok, A. 2016 ‘Law of the nano-wall’ in nano-channel gas flows. Microfluid Nanofluid 20, 46.
Bird, G. A. 1994 Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford University Press.
Brull, S., Charrier, P. & Mieussens, L. 2016 Nanoscale roughness effect on Maxwell-like boundary conditions for the Boltzmann equation. Phys. Fluids 28, 082004.
Cercignani, C. 1971 Model for gas surface interaction: comparison between theory and experiments. In 7th International Symposium on Rarefied Gas Dynamics, vol. 1, pp. 7579. Editrice Tecnico.
Cercignani, C. 1988 The Boltzmann Equation and its Applications. Springer.
Cercignani, C. & Lampis, M. 1971 Kinetic models for gas-surface interactions. Transp. Theory Stat. Phys. 1, 101114.
Chapman, S. & Cowling, T. G. 1970 The Mathematical Theory of Non-uniform Gases. Cambridge University Press.
Dodulad, O. I., Kloss, Y. Y., Savichkin, D. O. & Tcheremissine, F. G. 2014 Knudsen pumps modeling with Lennard–Jones and ab initio intermolecular potentials. Vacuum 109, 360367.
Dodulad, O. I. & Tcheremissine, F. G. 2013 Computation of a shock wave structure in monatomic gas with accuracy control. Comput. Math. Math. Phys. 53, 827844.
Edmonds, T. & Hobson, J. P. 1965 A study of thermal transpiration using ultrahigh-vacuum techniques. J. Vac. Sci. Technol. 2, 182197.
Epstein, M. 1967 A model of the wall boundary condition in kinetic theory. AIAA J. 5, 17971800.
Ewart, T., Perrier, P., Graur, I. A. & Méolans, J. G. 2007 Mass flow rate measurements in a microchannel, from hydrodynamic to near free molecular regimes. J. Fluid Mech. 584, 337356.
Frezzotti, A. & Gibelli, L. 2008 A kinetic model for fluid wall interaction. Proc. IMechE, Part C: J. Mech. Eng. Science 222, 787795.
Gad-el-Hak, M. 1999 The fluid mechanics of microdevices – the Freeman Scholar lecture. J. Fluids Engng 121 (1), 533.
Garcia, R. D. M. & Siewert, C. E. 2009 The linearized Boltzmann equation with Cercignani–Lampis boundary conditions: basic flow problems in a plane channel. Eur. J. Mech. (B/Fluids) 28, 387396.
Graur, I. A. & Ho, M. T. 2014 Rarefied gas flow through a long rectangular channel of variable cross section. Vacuum 101, 328332.
Gu, K., Watkins, C. B. & Koplik, J. 2001 Atomistic hybrid DSMC/NEMD method for nonequilibrium multiscale simulations. J. Comput. Phys. 229, 13811400.
Hadjiconstantinou, N. G., Garcia, A. L., Bazant, M. Z. & He, G. 2003 Statistical error in particle simulations of hydrodynamic phenomena. J. Comput. Phys. 187, 274297.
Ishiyama, T., Yano, T. & Fujikawa, S. 2005 Kinetic boundary condition at a vapor-liquid interface. Phys. Rev. Lett. 95, 084504.
Karniadakis, G., Beskok, A. & Aluru, N. 2005 Microflows and Nanoflows: Fundamentals and Simulation. Springer.
Klinc, T. & Kuěčer, I. 1972 Slip coefficients for general gas surface interaction. Phys. Fluids 15, 10181022.
Knudsen, M. 1909 Die Gesetze der Molekularströmung und der inneren Reibungsströmung der Gase durch Röhren. Ann. Phys. 333, 75130.
Kon, M., Kobayashi, K. & Watanabe, M. 2014 Method of determining kinetic boundary conditions in net evaporation/condensation. Phys. Fluids 26, 072003.
Kowalczyk, P., Palczewski, A., Russo, G. & Walenta, Z. 2008 Numerical solutions of the Boltzmann equation: comparison of different algorithms. Eur. J. Mech. (B/Fluids) 27 (1), 6274.
Liang, T., Li, Q. & Ye, W. J. 2013 Performance evaluation of Maxwell and Cercignani–Lampis gas-wall interaction models in the modeling of thermally driven rarefied gas transport. Phys. Rev. E 88, 013009.
Liang, T. & Ye, W. J. 2014 An efficient hybrid DSMC/MD algorithm for accurate modeling of micro gas flows. Commun. Comput. Phys. 15, 246264.
Loyalka, S. K. 1989 Temperature jump and thermal creep slip: rigid sphere gas. Phys. Fluids A 1, 403408.
Loyalka, S. K. & Cipolla, J. W. 1971 Thermal creep slip with arbitrary accommodation at the surface. Phys. Fluids 14, 1656.
Maxwell, J. C. 1879 On stresses in rarefied gases arising from inequalities of temperature. Phil. Trans. R. Soc. Lond. 170, 231256.
Porodnov, B. T., Kulev, A. N. & Tuchvetov, F. T. 1978 Thermal transpiration in a circular capillary with a small temperature difference. J. Fluid Mech. 88, 609622.
Porodnov, B. T., Suetin, P. E., Borisov, S. F. & Akinshin, V. D. 1974 Experimental investigation of rarefied gas flow in different channels. J. Fluid Mech. 64, 417437.
Rojas-Cárdenas, M., Graur, I. A., Perrier, P. & Méolans, J. G. 2013 Time-dependent experimental analysis of a thermal transpiration rarefied gas flow. Phys. Fluids 25, 072002.
Sharipov, F. 2002 Application of the Cercignani–Lampis scattering kernel to calculations of rarefied gas flows. I. Plane flow between two parallel plates. Eur. J. Mech. (B/Fluids) 21, 113123.
Sharipov, F. 2003a Application of the Cercignani–Lampis scattering kernel to calculations of rarefied gas flows. II. Slip and jump coefficients. Eur. J. Mech. (B/Fluids) 22, 133143.
Sharipov, F. 2003b Application of the Cercignani–Lampis scattering kernel to calculations of rarefied gas flows. III. Poiseuille flow and thermal creep through a long tube. Eur. J. Mech. (B/Fluids) 22, 145154.
Sharipov, F. 2011 Data on the velocity slip and temperature jump on a gas-solid interface. J. Phys. Chem. Ref. Data 40, 023101.
Sharipov, F. & Bertoldo, G. 2009a Numerical solution of the linearized Boltzmann equation for an arbitrary intermolecular potential. J. Comput. Phys. 228, 33453357.
Sharipov, F. & Bertoldo, G. 2009b Poiseuille flow and thermal creep based on the Boltzmann equation with the Lennard–Jones potential over a wide range of the Knudsen number. Phys. Fluids 21, 067101.
Sharipov, F. & Seleznev, V. 1994 Rarefied flow through a long tube at any pressure ratio. J. Vac. Sci. Technol. A 12, 29332935.
Sharipov, F. & Strapasson, J. L. 2012 Direct simulation Monte Carlo method for an arbitrary intermolecular potential. Phys. Fluids 24, 011703.
Sharipov, F. & Strapasson, J. L. 2014 Ab initio simulation of rarefied gas flow through a thin orifice. Vacuum 109, 246252.
Siewert, C. E. 2003 Viscous-slip, thermal-slip, and temperature-jump coefficients as defined by the linearzied Boltzmann equation and the Cercignani–Lampis boundary condition. Phys. Fluids 15, 16961701.
Strapasson, J. L. & Sharipov, F. 2014 Ab initio simulation of heat transfer through a mixture of rarefied gases. Intl J. Heat Mass Transfer 71, 9197.
Struchtrup, H. 2013 Maxwell boundary condition and velocity dependent accommodation coefficient. Phys. Fluids 25, 112001.
Takata, S. & Funagane, H. 2011 Poiseuille and thermal transpiration flows of a highly rarefied gas: over-concentration in the velocity distribution function. J. Fluid Mech. 669, 242259.
Takata, S., Yasuda, S., Kosuge, S. & Aoki, K. 2003 Numerical analysis of thermal-slip and diffusion-type flows of a binary mixture of hard-sphere molecular gases. Phys. Fluids 15, 37453766.
Venkattraman, A. & Alexeenko, A. A. 2012 Binary scattering model for Lennard–Jones potential: transport coefficients and collision integrals for non-equilibrium gas flow simulations. Phys. Fluids 24, 027101.
Watvisave, D. S., Puranik, B. P. & Bhandarkar, U. V. 2015 A hybrid MD-DSMC coupling method to investigate flow characteristics of micro-devices. J. Comput. Phys. 302, 603617.
Weaver, A. B., Venkattraman, A. & Alexeenko, A. A. 2014 Effect of intermolecular potential on compressible Couette flow in slip and transitional regimes. Phys. Fluids 26, 107102.
Wu, L., Liu, H. H., Zhang, Y. H. & Reese, J. M. 2015a Influence of intermolecular potentials on rarefied gas flows: fast spectral solutions of the Boltzmann equation. Phys. Fluids 27, 082002.
Wu, L., Reese, J. M. & Zhang, Y. H. 2014 Solving the Boltzmann equation by the fast spectral method: application to microflows. J. Fluid Mech. 746, 5384.
Wu, L., White, C., Scanlon, T. J., Reese, J. M. & Zhang, Y. H. 2013 Deterministic numerical solutions of the Boltzmann equation using the fast spectral method. J. Comput. Phys. 250, 2752.
Wu, L., White, C., Scanlon, T. J., Reese, J. M. & Zhang, Y. H. 2015b A kinetic model of the Boltzmann equation for nonvibrating polyatomic gases. J. Fluid Mech. 763, 2450.
Wu, L., Zhang, J., Liu, H. H., Zhang, Y. H. & Reese, J. M. 2017 A fast iterative scheme for the linearized boltzmann equation. J. Comput. Phys. 338, 431451.
Wu, L., Zhang, J., Reese, J. M. & Zhang, Y. H. 2015c A fast spectral method for the Boltzmann equation for monatomic gas mixtures. J. Comput. Phys. 298, 602621.
Yamaguchi, H., Perrier, P., Ho, M. T., Méolans, J. G., Niimi, T. & Graur, I. A. 2016 Mass flow rate measurement of thermal creep flow from transitional to slip flow regime. J. Fluid Mech. 795, 690707.
Yamaguchi, H., Rojas-Cárdenas, M., Perrier, P., Graur, I. & Niimi, T. 2014 Thermal transpiration flow through a single rectangular channel. J. Fluid Mech. 744, 169182.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO

Assessment and development of the gas kinetic boundary condition for the Boltzmann equation

  • Lei Wu (a1) and Henning Struchtrup (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.