Hostname: page-component-54dcc4c588-9xpg2 Total loading time: 0 Render date: 2025-09-21T06:48:08.042Z Has data issue: false hasContentIssue false

Asymptotic solutions for self-similarly expanding fault slip induced by fluid injection at constant rate

Published online by Cambridge University Press:  17 September 2025

Robert C. Viesca*
Affiliation:
Department of Civil and Environmental Engineering, Tufts University, Medford, MA 02155, USA
*
Corresponding author: Robert C. Viesca, robert.viesca@tufts.edu

Abstract

We examine the circular, self-similar expansion of frictional rupture due to fluid injected at a constant rate. Fluid migrates within a thin permeable layer parallel to and containing the fault plane. When the Poisson ratio $\nu =0$, self-similarity of the fluid pressure implies fault slip also evolves in an axisymmetric, self-similar manner, reducing the three-dimensional problem for the evolution of fault slip to a single self-similar dimension. The rupture radius grows as $\lambda \sqrt {4\alpha _{hy} t}$, where $t$ is time since the start of injection and $\alpha _{hy}$ is the hydraulic diffusivity of the pore fluid pressure. The prefactor $\lambda$ is determined by a single parameter, $T$, which depends on the pre-injection stress state and injection conditions. The prefactor has the range $0\lt \lambda \lt \infty$, the lower and upper limits of which correspond to marginal pressurisation of the fault and critically stressed conditions, in which the fault-resolved shear stress is close to the pre-injection fault strength. In both limits, we derive solutions for slip by perturbation expansion, to arbitrary order. In the marginally pressurised limit ($\lambda \rightarrow 0$), the perturbation is regular and the series expansion is convergent. For the critically stressed limit ($\lambda \rightarrow \infty$), the perturbation is singular, contains a boundary layer and an outer solution, and the series is divergent. In this case, we provide a composite solution with uniform convergence over the entire rupture using a matched asymptotic expansion. We provide error estimates of the asymptotic expansions in both limits and demonstrate optimal truncation of the singular perturbation in the critically stressed limit.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Atkinson, C. & Craster, R.V. 1994 A singular perturbation approach to integral equations occurring in poroelasticity. IMA J. Appl. Maths 52, 221252.CrossRefGoogle Scholar
Bender, C.M. & Orszag, S.A. 1999 Advanced mathematical methods for scientists and engineers. Springer-Verlag.10.1007/978-1-4757-3069-2CrossRefGoogle Scholar
Berrios-Rivera, N., Ozawa, S. & Dunham, E.M. 2025 Models of fluid-induced seismic slip with permeability enhancement and rate-and-state friction. ESS Open Archive. Available at: https://essopenarchive.org/doi/full/10.22541/essoar.175357075.53109087/v1.Google Scholar
Bhattacharya, P. & Viesca, R.C. 2019 Fluid-induced aseismic fault slip outpaces pore-fluid migration. Science 364, 464468.CrossRefGoogle ScholarPubMed
Craster, R.V. & Atkinson, C. 1992 Shear cracks in thermoplastic and poroelastic media. J. Mech. Phys. Solids 40 (4), 887924.CrossRefGoogle Scholar
Craster, R.V. & Atkinson, C. 1994 Crack problems in a poroelastic medium: an asymptotic approach. Proc. R. Soc. Lond. A 346, 387428.Google Scholar
Desroches, J., Detournay, E., Lenoach, B., Papanastasiou, P., Pearson, J.R.A., Thiercelin, M. & Cheng, A. 1994 The crack tip region in hydraulic fracturing. Proc. R. Soc. Lond. A 447, 3948.Google Scholar
Dublanchet, P. 2019 Fluid driven shear cracks on a strengthening rate-and-state frictional fault. J. Mech. Phys. Solids 132 , 103672.CrossRefGoogle Scholar
Dunham, E.M. 2024 Fluid-driven aseismic fault slip with permeability enhancement and dilatancy. Phil. Trans. R. Soc. A: Math. Phys. Eng. Sci. 382, 20230255.Google ScholarPubMed
Dyskin, A.V., Germanovich, L.N. & Ustinov, K.B. 2000 Asymptotic analysis of crack interaction with free boundary. Intl J. Solids Struct 37, 857886.10.1016/S0020-7683(99)00063-3CrossRefGoogle Scholar
Edmunds, T.M. & Willis, J.R. 1976 a Matched asymptotic expansions in nonlinear fracture mechanics – I. Longitudinal shear of an elastic perfectly-plastic specimen. J. Mech. Phys. Solids 24 (4), 205223.Google Scholar
Edmunds, T.M. & Willis, J.R. 1976 b Matched asymptotic expansions in nonlinear fracture mechanics – II. Longitudinal shear of an elastic work-hardening plastic specimen. J. Mech. Phys. Solids 24 (4), 225237.10.1016/0022-5096(76)90004-1CrossRefGoogle Scholar
Edmunds, T.M. & Willis, J.R. 1977 Matched asymptotic expansions in nonlinear fracture mechanics – III. In-plane loading of an elastic perfectly-plastic symmetric specimen. J. Mech. Phys. Solids 25 (6), 423455.CrossRefGoogle Scholar
Erickson, B.A. et al. 2020 The community code verification exercise for simulating sequences of earthquakes and aseismic slip (SEAS). Seismol. Res. Lett. 91 (2A), 874890.10.1785/0220190248CrossRefGoogle Scholar
Garagash, D.I. 2006 Propagation of a plane-strain hydraulic fracture with a fluid lag: early-time solution. Intl J. Solids Struct. 43, 58115835.10.1016/j.ijsolstr.2005.10.009CrossRefGoogle Scholar
Garagash, D.I. & Detournay, E. 2000 The tip region of a fluid-driven fracture in an elastic medium. J. Appl. Mech. 67, 183192.Google Scholar
Garagash, D.I. & Detournay, E. 2005 Plane-strain propagation of a fluid-driven fracture: small toughness solution. J. Appl. Mech 72 (6), 916928.Google Scholar
Garagash, D.I. & Germanovich, L.N. 2012 Nucleation and arrest of dynamic slip on a pressurized fault. J. Geophys. Res. 117 , B10310.Google Scholar
Harris, R.A. et al. 2009 The SCEC/USGS dynamic earthquake rupture code verification exercise. Seismol. Res. Lett. 80 (1), 119126.CrossRefGoogle Scholar
Hinch, E.J. 1991 Perturbation Methods. Cambridge University Press.CrossRefGoogle Scholar
Im, K. & Avouac, J.-P. 2024 Maximum magnitude of induced earthquakes in rate and state friction framework. Seismol. Res. Lett. 96 (3), 16541664.10.1785/0220240382CrossRefGoogle Scholar
Jacquey, A.B. & Viesca, R.C. 2023 Nucleation and arrest of fluid-induced aseismic slip. Geophys. Res. Lett. 50 , e2022GL101228.CrossRefGoogle Scholar
Lambert, V.R. et al. 2025 Community-driven code comparisons for simulations of fluid-induced aseismic slip. J. Geophys. Res 130, e2024JB030601.10.1029/2024JB030601CrossRefGoogle Scholar
Lister, J.R. 1990 Buoyancy-driven fluid fracture: similarity solutions for the horizontal and vertical propagation of fluid-filled cracks. J. Fluid Mech. 217, 213239.10.1017/S0022112090000696CrossRefGoogle Scholar
Lister, J.R., Skinner, D.J. & Large, T.M.J. 2019 Viscous control of shallow elastic fracture: peeling without precursors. J. Fluid. Mech 868, 119140.10.1017/jfm.2019.185CrossRefGoogle Scholar
Marck, J., Savitski, A.A. & Detournay, E. 2015 Line source in a poroelasic layer bounded by an elastic space. Intl J. Numer. Anal. Meth. Geomech. 39, 14841505.10.1002/nag.2405CrossRefGoogle Scholar
Rice, J.R. 1980 Mechanics of earthquake rupture. In Physics of the Earth’s Interior (eds. A.M. Dziewonski & E. Boschi), pp. 555649. Italian Physical Society/North Holland Publ. Co.Google Scholar
Ross, Z.E., Cochran, E.S., Trugman, D.T. & Smith, J.D. 2020 3D fault architecture controls the dynamism of earthquake swarms. Science 368, 13571361.10.1126/science.abb0779CrossRefGoogle ScholarPubMed
Rudnicki, J.W. 1990 Boundary layer analysis of plane strain shear cracks propagating steadily on an impermeable plane in an elastic diffusive solid. J. Mech. Phys. Solids 39 (2), 201221.10.1016/0022-5096(91)90003-7CrossRefGoogle Scholar
Rudnicki, J.W. & Koutsibelas, D.A. 1991 Steady propagation of plane strain shear cracks on an impermeable plane in an elastic diffusive solid. Intl J. Solids Struct. 27 (2), 205225.CrossRefGoogle Scholar
Sáez, A. & Lecampion, B. 2023 Post-injection aseismic slip as a mechanism for the delayed triggering of seismicity. Proc. R. Soc. A: Math. Phys. Eng. Sci. 479, 20220810.10.1098/rspa.2022.0810CrossRefGoogle Scholar
Sáez, A. & Lecampion, B. 2024 Fluid-Driven slow slip and earthquake nucleation on a slip-weakening circular fault. J. Mech. Phys. Solids 183, 105506. 10.1016/j.jmps.2023.105506CrossRefGoogle Scholar
Sáez, A., Lecampion, B., Bhattacharya, P. & Viesca, R.C. 2022 Three-dimensional fluid-driven stable frictional ruptures. J. Mech. Phys. Solids 160, 104754.10.1016/j.jmps.2021.104754CrossRefGoogle Scholar
Sáez, A., Passelègue, F. & Lecampion, B. 2025 Maximum size and magnitude of injection-induced slow slip events. Sci. Adv. 11, eadq0662.10.1126/sciadv.adq0662CrossRefGoogle ScholarPubMed
Salamon, N.J. & Dundurs, J. 1971 Elastic fields of a dislocation loop in a two-phase material. J. Elasticity 1 (2), 153164.Google Scholar
Salamon, N.J. & Dundurs, J. 1977 A circular glide dislocation loop in a two-phase material. J. Phys. C Solid State 10, 497507.10.1088/0022-3719/10/4/007CrossRefGoogle Scholar
Savitski, A.A. & Detournay, E. 2002 Propagation of a penny-shaped fluid-driven fracture in an impermeable rock: asymptotic solutions. Intl J. Solids Struct. 39, 63116337.10.1016/S0020-7683(02)00492-4CrossRefGoogle Scholar
Simons, D.A. 1977 Boundary-layer analysis of propagating mode II cracks in porous elastic media. J. Mech. Phys. Solids 25, 99115.CrossRefGoogle Scholar
Simons, D.A. & Rice, J.R. 1976 The stabilization of spreading shear faults by coupled deformation-diffusion effects in fluid-infiltrated porous materials. J. Geophys. Res. 81 (29), 53225334.Google Scholar
Sneddon, I.N. 1951 Fourier Transforms. McGraw-Hill Google Scholar
Spence, D.A. & Sharp, P. 1985 Self-similar solutions for elastohydrodynamic cavity flow. Proc. R. Soc. Lond. A 400, 289313.Google Scholar
Thouless, M.D., Evans, A.G., Ashby, M.F. & Hutchinson, J.W. 1987 The edge cracking and spalling of brittle plates. Acta Metall. 35 (6), 13331341.10.1016/0001-6160(87)90015-0CrossRefGoogle Scholar
Viesca, R.C. 2021 Self-similar fault slip in response to fluid injection. J. Fluid Mech. 928, A29.10.1017/jfm.2021.825CrossRefGoogle Scholar
Viesca, R.C. & Rice, J.R. 2012 Nucleation of slip-weakening rupture instability in landslides by localized increase of pore pressure. J. Geophys. Res. 117, B03104.Google Scholar
Zlatin, A.N. & Khrapkov, A.A. 1986 A semi-infinite crack parallel to the boundary of the elastic half-plane. Sov. Dokl. Phys. 31 (12), 10091010.Google Scholar