Skip to main content Accessibility help

Autonomous propulsion of nanorods trapped in an acoustic field

  • Jesse F. Collis (a1), Debadi Chakraborty (a1) and John E. Sader (a1)

Acoustic fields in a liquid medium can trap and suspend small particles at their pressure nodes. Recent measurements demonstrate that nanorods immersed in these fields generate autonomous propulsion, with their direction and speed controlled by both the particle’s shape and density distribution. Specifically, slender nanorods with an asymmetric density distribution about their geometric centre are observed to move steadily with their low density end leading the motion; particle geometry exerts an equally significant and potentially opposing effect. In this article, we investigate the physical mechanisms underlying this combined density/shape induced phenomenon by developing a simple yet rigorous mathematical framework for axisymmetric particles. This only requires solution of the (linear) unsteady Stokes equations, which can be performed numerically or analytically. The theory holds for all particle shapes, particle aspect ratios (length/width) and acoustic frequencies. It is applied to slender dumbbell-shaped particles and asymmetric nanorods – these provide model systems to investigate the competing effects governing propulsion. This shows that geometric and density asymmetries in the particle generate axial jets that can produce motion in either direction, depending on the relative strengths of these asymmetries and the acoustic Reynolds number (dimensionless frequency). Strikingly, the propulsion direction is found to reverse with increasing frequency, an effect that is yet to be reported experimentally. The general theory and mechanism described here enable the a priori design and fabrication of nano-motors in fluid for transport of small-scale payloads and robotic applications.

Corresponding author
Email address for correspondence:
Hide All
Ahmed, S., Gentekos, D. T., Fink, C. A. & Mallouk, T. E. 2014 Self-assembly of nanorod motors into geometrically regular multimers and their propulsion by ultrasound. ACS Nano 8 (11), 1105311060.
Ahmed, S., Wang, W., Bai, L., Gentekos, D. T., Hoyos, M. & Mallouk, T. E. 2016 Density and shape effects in the acoustic propulsion of bimetallic nanorod motors. ACS Nano 10 (4), 47634769.
Barnkob, R., Augustsson, P., Laurell, T. & Bruus, H. 2012 Acoustic radiation-and streaming-induced microparticle velocities determined by microparticle image velocimetry in an ultrasound symmetry plane. Phys. Rev. E 86 (5), 056307.
Brenner, H. 1964 The Stokes resistance of an arbitrary particle – II: an extension. Chem. Engng Sci. 19 (9), 599629.
Campuzano, S., Kagan, D., Orozco, J. & Wang, J. 2011 Motion-driven sensing and biosensing using electrochemically propelled nanomotors. Analyst 136 (22), 46214630.
Córdova-Figueroa, U. M. & Brady, J. F. 2008 Osmotic propulsion: the osmotic motor. Phys. Rev. Lett. 100 (15), 158303.
Eller, A. 1968 Force on a bubble in a standing acoustic wave. J. Acoust. Soc. Am. 43 (1), 170171.
Fattah, Z., Loget, G., Lapeyre, V., Garrigue, P., Warakulwit, C., Limtrakul, J., Bouffier, L. & Kuhn, A. 2011 Straightforward single-step generation of microswimmers by bipolar electrochemistry. Electrochim. Acta 56 (28), 1056210566.
Fischer, P. & Ghosh, A. 2011 Magnetically actuated propulsion at low Reynolds numbers: towards nanoscale control. Nanoscale 3 (2), 557563.
Guix, M., Mayorga-Martinez, C. C. & Merkoçi, A. 2014 Nano/micromotors in (bio) chemical science applications. Chem. Rev. 114 (12), 62856322.
Guix, M., Orozco, J., García, M., Gao, W., Sattayasamitsathit, S., Merkoçi, A., Escarpa, A. & Wang, J. 2012 Superhydrophobic alkanethiol-coated microsubmarines for effective removal of oil. ACS Nano 6 (5), 44454451.
Happel, J. & Brenner, H. 1983 Low Reynolds Number Hydrodynamics. Martinus Nijhoff.
Howse, J. R., Jones, R. A. L., Ryan, A. J., Gough, T., Vafabakhsh, R. & Golestanian, R. 2007 Self-motile colloidal particles: from directed propulsion to random walk. Phys. Rev. Lett. 99 (4), 048102.
Ibele, M., Mallouk, T. E. & Sen, A. 2009 Schooling behavior of light-powered autonomous micromotors in water. Angew. Chem. Intl Ed. Engl. 48 (18), 33083312.
Jiang, H. R., Yoshinaga, N. & Sano, M. 2010 Active motion of a janus particle by self-thermophoresis in a defocused laser beam. Phys. Rev. Lett. 105 (26), 268302.
King, L. V. 1934 On the acoustic radiation pressure on spheres. Proc. R. Soc. Lond. A 147 (861), 212240.
Lim, W. P., Yao, K. & Chen, Y. 2007 Alignment of carbon nanotubes by acoustic manipulation in a fluidic medium. J. Phys. Chem. C 111 (45), 1680216807.
Litvak, E., Foster, K. R. & Repacholi, M. H. 2002 Health and safety implications of exposure to electromagnetic fields in the frequency range 300 Hz to 10 MHz. Bioelectromagnetics 23 (1), 6882.
Loget, G. & Kuhn, A. 2011 Electric field-induced chemical locomotion of conducting objects. Nat. Commun. 2, 535.
Nadal, F. & Lauga, E. 2014 Asymmetric steady streaming as a mechanism for acoustic propulsion of rigid bodies. Phys. Fluids 26 (8), 082001.
Oberti, S., Neild, A. & Dual, J. 2007 Manipulation of micrometer sized particles within a micromachined fluidic device to form two-dimensional patterns using ultrasound. J. Acoust. Soc. Am. 121 (2), 778785.
Orozco, J., García-Gradilla, V., D’Agostino, M., Gao, W., Cortés, A. & Wang, J. 2013 Artificial enzyme-powered microfish for water-quality testing. ACS Nano 7 (1), 818824.
Paxton, W. F., Kistler, K. C., Olmeda, C. C., Sen, A., St. Angelo, S. K., Cao, Y., Mallouk, T. E., Lammert, P. E. & Crespi, V. H. 2004 Catalytic nanomotors: autonomous movement of striped nanorods. J. Am. Chem. Soc. 126 (41), 1342413431.
Petit, T., Zhang, L., Peyer, K. E., Kratochvil, B. E. & Nelson, B. J. 2011 Selective trapping and manipulation of microscale objects using mobile microvortices. Nano Lett. 12 (1), 156160.
Pozrikidis, C. 1989 A singularity method for unsteady linearized flow. Phys. Fluids A 1 (9), 15081520.
Rao, K. J., Li, F., Meng, L., Zheng, H., Cai, F. & Wang, W. 2015 A force to be reckoned with: a review of synthetic microswimmers powered by ultrasound. Small 11 (24), 28362846.
Riley, N. 1966 On a sphere oscillating in a viscous fluid. Q. J. Mech. Appl. Maths 19 (4), 461472.
Saha, S. & Stoddart, J. F. 2007 Photo-driven molecular devices. Chem. Soc. Rev. 36 (1), 7792.
Sánchez, S., Soler, L. & Katuri, J. 2015 Chemically powered micro-and nanomotors. Angew. Chem. Intl Ed. Engl. 54 (5), 14141444.
Shi, J., Yazdi, S., Lin, S. S., Ding, X., Chiang, I. K., Sharp, K. & Huang, T. J. 2011 Three-dimensional continuous particle focusing in a microfluidic channel via standing surface acoustic waves (SSAW). Lab on a Chip 11 (14), 23192324.
Sundararajan, S., Lammert, P. E., Zudans, A. W., Crespi, V. H. & Sen, A. 2008 Catalytic motors for transport of colloidal cargo. Nano Lett. 8 (5), 12711276.
Tierno, P., Golestanian, R., Pagonabarraga, I. & Sagués, F. 2008 Magnetically actuated colloidal microswimmers. J. Phys. Chem. B 112 (51), 1652516528.
Wang, W., Castro, L. A., Hoyos, M. & Mallouk, T. E. 2012 Autonomous motion of metallic microrods propelled by ultrasound. ACS Nano 6 (7), 61226132.
Wang, W., Duan, W., Zhang, Z., Sun, M., Sen, A. & Mallouk, T. E. 2015 A tale of two forces: simultaneous chemical and acoustic propulsion of bimetallic micromotors. Chem. Commun. 51 (6), 10201023.
Wang, W., Li, S., Mair, L., Ahmed, S., Huang, T. J. & Mallouk, T. E. 2014 Acoustic propulsion of nanorod motors inside living cells. Angew. Chem. Intl Ed. Engl. 53 (12), 32013204.
Wiel, M. K. J., Delden, R. A., Meetsma, A. & Feringa, B. L. 2005 Light-driven molecular motors: stepwise thermal helix inversion during unidirectional rotation of sterically overcrowded biphenanthrylidenes. J. Am. Chem. Soc. 127 (41), 1420814222.
Wu, J., Balasubramanian, S., Kagan, D., Manesh, K. M., Campuzano, S. & Wang, J. 2010 Motion-based DNA detection using catalytic nanomotors. Nat. Commun. 1, 36.
Xu, T., Soto, F., Gao, W., Dong, R., Garcia-Gradilla, V., Magaña, E., Zhang, X. & Wang, J. 2015 Reversible swarming and separation of self-propelled chemically powered nanomotors under acoustic fields. J. Am. Chem. Soc. 137 (6), 21632166.
Ye, Z., Diller, E. & Sitti, M. 2012 Micro-manipulation using rotational fluid flows induced by remote magnetic micro-manipulators. J. Appl. Phys. 112 (6), 064912.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed