Hostname: page-component-68c7f8b79f-p5c6v Total loading time: 0 Render date: 2025-12-16T03:47:19.463Z Has data issue: false hasContentIssue false

Basal layer of granular flow down smooth and rough inclines: kinematics, slip laws and rheology

Published online by Cambridge University Press:  16 December 2025

Teng Wang
Affiliation:
Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China Department of Civil Engineering, The University of Hong Kong, Hong Kong, PR China
Lu Jing*
Affiliation:
Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, PR China
C.Y. Kwok
Affiliation:
Department of Civil Engineering, The University of Hong Kong, Hong Kong, PR China
Yuri D. Sobral
Affiliation:
Departamento de Matemática, Universidade de Brasília, Campus Universitário Darcy Ribeiro, 70910-900 Brasília, DF, Brazil
Thomas Weinhart
Affiliation:
Department of Thermal and Fluid Engineering, University of Twente, Enschede 7500 AE, The Netherlands
Anthony R. Thornton
Affiliation:
Department of Thermal and Fluid Engineering, University of Twente, Enschede 7500 AE, The Netherlands Department of Mathematics, University of Manchester, Manchester M13 9PL, UK
*
Corresponding author: Lu Jing, lujing@sz.tsinghua.edu.cn

Abstract

Granular flow down an inclined plane is ubiquitous in geophysical and industrial applications. On rough inclines, the flow exhibits Bagnold’s velocity profile and follows the so-called $\mu (I)$ local rheology. On insufficiently rough or smooth inclines, however, velocity slip occurs at the bottom and a basal layer with strong agitation emerges below the bulk, which is not predicted by the local rheology. Here, we use discrete element method simulations to study detailed dynamics of the basal layer in granular flows down both smooth and rough inclines. We control the roughness via a dimensionless parameter, $R_a$, varied systematically from 0 (flat, frictional plane) to near 1 (very rough plane). Three flow regimes are identified: a slip regime ($R_a \lesssim 0.45$) where a dilated basal layer appears, a no-slip regime ($R_a \gtrsim 0.6$) and an intermediate transition regime. In the slip regime the kinematics profiles (velocity, shear rate and granular temperature) of the basal layer strongly deviate from Bagnold’s profiles. General basal slip laws are developed that express the slip velocity as a function of the local shear rate (or granular temperature), base roughness and slope angle. Moreover, the basal layer thickness is insensitive to flow conditions but depends somewhat on the interparticle coefficient of restitution. Finally, we show that the rheological properties of the basal layer do not follow the $\mu (I)$ rheology, but are captured by Bagnold’s stress scaling and an extended kinetic theory for granular flows. Our findings can help develop more predictive granular flow models in the future.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Antypov, D. & Elliott, J.A. 2011 On an analytical solution for the damped Hertzian spring. Europhys. Lett. 94 (5), 50004.CrossRefGoogle Scholar
Arran, M.I., Mangeney, A., De Rosny, J. & Toussaint, R. 2024 Simulated slidequakes: insights from DEM simulations into the high-frequency seismic signal generated by geophysical granular flows. J. Geophys. Res. Earth Surf. 129 (8), e2023JF007455.10.1029/2023JF007455CrossRefGoogle Scholar
Artoni, R. & Richard, P. 2015 a Average balance equations, scale dependence, and energy cascade for granular materials. Phys. Rev. E 91 (3), 032202.CrossRefGoogle ScholarPubMed
Artoni, R. & Richard, P. 2015 b Effective wall friction in wall-bounded 3D dense granular flows. Phys. Rev. Lett. 115 (15), 158001.10.1103/PhysRevLett.115.158001CrossRefGoogle ScholarPubMed
Artoni, R., Santomaso, A.C., Go, M. & Canu, P. 2012 Scaling laws for the slip velocity in dense granular flows. Phys. Rev. Lett. 108 (23), 238002.10.1103/PhysRevLett.108.238002CrossRefGoogle ScholarPubMed
Bagnold, R.A. 1954 Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc. R. Soc. Lond. Ser. A 225 (1160), 4963.Google Scholar
Berzi, D. 2024 On granular flows: from kinetic theory to inertial rheology and nonlocal constitutive models. Phys. Rev. Fluids 9 (3), 034304.10.1103/PhysRevFluids.9.034304CrossRefGoogle Scholar
Berzi, D. & Jenkins, J.T. 2015 Steady shearing flows of deformable, inelastic spheres. Soft Matt. 11 (24), 47994808.10.1039/C5SM00337GCrossRefGoogle ScholarPubMed
Berzi, D., Jenkins, J.T. & Richard, P. 2020 Extended kinetic theory for granular flow over and within an inclined erodible bed. J. Fluid Mech. 885, A27.10.1017/jfm.2019.1017CrossRefGoogle Scholar
Berzi, D. & Vescovi, D. 2017 Shearing flows of frictionless spheres over bumpy planes: slip velocity. Comput. Part. Mech. 4, 373377.10.1007/s40571-016-0115-6CrossRefGoogle Scholar
Breard, E.C.P., Dufek, J., Fullard, L. & Carrara, A. 2020 The basal friction coefficient of granular flows with and without excess pore pressure: implications for pyroclastic density currents, water-rich debris flows, and rock and submarine avalanches. J. Geophys. Res. Solid Earth 125 (12), e2020JB020203.CrossRefGoogle Scholar
Brodu, N., Delannay, R., Valance, A. & Richard, P. 2015 New patterns in high-speed granular flows. J. Fluid Mech. 769, 218228.CrossRefGoogle Scholar
Börzsönyi, T. & Ecke, R.E. 2007 Flow rule of dense granular flows down a rough incline. Phys. Rev. E 76 (3), 031301.10.1103/PhysRevE.76.031301CrossRefGoogle Scholar
da Cruz, F., Emam, S., Prochnow, M., Roux, J.-N. & Chevoir, F. 2005 Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E 72 (2), 021309.10.1103/PhysRevE.72.021309CrossRefGoogle ScholarPubMed
Delannay, R., Louge, M., Richard, P., Taberlet, N. & Valance, A. 2007 Towards a theoretical picture of dense granular flows down inclines. Nat. Mater. 6 (2), 99108.10.1038/nmat1813CrossRefGoogle ScholarPubMed
Delannay, R., Valance, A., Mangeney, A., Roche, O. & Richard, P. 2017 Granular and particle-laden flows: from laboratory experiments to field observations. J. Phys. D: Appl. Phys. 50 (5), 053001.CrossRefGoogle Scholar
Dippel, S., Batrouni, G.G. & Wolf, D.E. 1996 Collision-induced friction in the motion of a single particle on a bumpy inclined line. Phys. Rev. E 54 (6), 6845.CrossRefGoogle ScholarPubMed
Forterre, Y. & Pouliquen, O. 2008 Flows of dense granular media. Annu. Rev. Fluid Mech. 40 (1), 124.CrossRefGoogle Scholar
Gaume, J., Chambon, G. & Naaim, M. 2020 Microscopic origin of nonlocal rheology in dense granular materials. Phys. Rev. Lett. 125 (18), 188001.10.1103/PhysRevLett.125.188001CrossRefGoogle ScholarPubMed
Goldhirsch, I. 2003 Rapid granular flows. Annu. Rev. Fluid Mech. 35 (1), 267293.10.1146/annurev.fluid.35.101101.161114CrossRefGoogle Scholar
Gollin, D., Berzi, D. & Bowman, E.T. 2017 Extended kinetic theory applied to inclined granular flows: role of boundaries. Granul. Matt. 19 (3), 56.10.1007/s10035-017-0738-1CrossRefGoogle Scholar
Goujon, C., Thomas, N. & Dalloz-Dubrujeaud, B. 2003 Monodisperse dry granular flows on inclined planes: role of roughness. Eur. Phys. J. E. 11 (2), 147157.10.1140/epje/i2003-10012-0CrossRefGoogle ScholarPubMed
Hui, K., Haff, P.K., Ungar, J.E. & Jackson, R. 1984 Boundary conditions for high-shear grain flows. J. Fluid Mech. 145, 223233.CrossRefGoogle Scholar
Jenkins, J.T. 1992 Boundary conditions for rapid granular flow: flat, frictional walls. J. Appl. Mech. 59 (1), 120127.10.1115/1.2899416CrossRefGoogle Scholar
Jenkins, J.T. 2007 Dense inclined flows of inelastic spheres. Granul. Matt. 10 (1), 4752.CrossRefGoogle Scholar
Jenkins, J.T. & Louge, M.Y. 1997 On the flux of fluctuation energy in a collisional grain flow at a flat, frictional wall. Phys. Fluids 9 (10), 28352840.CrossRefGoogle Scholar
Ji, S. & Shen, H.H. 2006 Effect of contact force models on granular flow dynamics. J. Engng Mech. 132 (11), 12521259.Google Scholar
Jing, L., Kwok, C.Y., Leung, Y.F. & Sobral, Y.D. 2016 Characterization of base roughness for granular chute flows. Phys Rev E 94 (5-1), 052901.CrossRefGoogle ScholarPubMed
Jop, P., Forterre, Y. & Pouliquen, O. 2006 A constitutive law for dense granular flows. Nature 441 (7094), 727730.10.1038/nature04801CrossRefGoogle ScholarPubMed
Kamrin, K. & Henann, D.L. 2015 Nonlocal modeling of granular flows down inclines. Soft Matt. 11 (1), 179185.10.1039/C4SM01838ACrossRefGoogle ScholarPubMed
Kamrin, K., Hill, K.M., Goldman, D.I. & Andrade, J.E. 2024 Advances in modeling dense granular media. Annu. Rev. Fluid Mech. 56 (1), 215240.CrossRefGoogle Scholar
Kim, S. & Kamrin, K. 2020 Power-law scaling in granular rheology across flow geometries. Phys. Rev. Lett. 125, 088002.10.1103/PhysRevLett.125.088002CrossRefGoogle ScholarPubMed
Kumaran, V. 2008 Dense granular flow down an inclined plane: from kinetic theory to granular dynamics. J. Fluid Mech. 599, 121168.10.1017/S002211200700002XCrossRefGoogle Scholar
Kumaran, V. & Bharathraj, S. 2013 The effect of base roughness on the development of a dense granular flow down an inclined plane. Phys. Fluids 25 (7), 070604.10.1063/1.4812806CrossRefGoogle Scholar
Kumaran, V. & Maheshwari, S. 2012 Transition due to base roughness in a dense granular flow down an inclined plane. Phys. Fluids 24 (5), 053302.10.1063/1.4710543CrossRefGoogle Scholar
Liu, J., Jing, L., Pähtz, T., Cui, Y., Zhou, G.G.D. & Fu, X. 2024 Effects of particle elongation on dense granular flows down a rough inclined plane. Phys. Rev. E 110 (4), 044902.10.1103/PhysRevE.110.044902CrossRefGoogle Scholar
Louge, M.Y. 2003 Model for dense granular flows down bumpy inclines. Phys. Rev. E 67, 061303.10.1103/PhysRevE.67.061303CrossRefGoogle ScholarPubMed
Louge, M.Y., Valance, A., Lancelot, P., Delannay, R. & Artières, O. 2015 Granular flows on a dissipative base. Phys. Rev. E 92 (2), 022204.10.1103/PhysRevE.92.022204CrossRefGoogle ScholarPubMed
Malloggi, F., Andreotti, B. & Clément, E. 2015 Nonlocal effects in sand flows on an inclined plane. Phys. Rev. E 91 (5), 052202.10.1103/PhysRevE.91.052202CrossRefGoogle Scholar
Pol, A., Artoni, R. & Richard, P. 2023 Unified scaling law for wall friction in laterally confined flows of shape anisotropic particles. Phys. Rev. Fluids 8 (8), 084302.10.1103/PhysRevFluids.8.084302CrossRefGoogle Scholar
Pouliquen, O. 1999 Scaling laws in granular flows down rough inclined planes. Phys. Fluids 11 (3), 542548.10.1063/1.869928CrossRefGoogle Scholar
Richard, P., Artoni, R., Valance, A. & Delannay, R. 2020 Influence of lateral confinement on granular flows: comparison between shear-driven and gravity-driven flows. Granul. Matt. 22 (4), 81.10.1007/s10035-020-01057-3CrossRefGoogle Scholar
Richman, M.W. 1988 Boundary conditions based upon a modified Maxwellian velocity distribution for flows of identical, smooth, nearly elastic spheres. Acta Mech. 75 (1–4), 227240.10.1007/BF01174637CrossRefGoogle Scholar
Rognon, P. & Macaulay, M. 2021 Shear-induced diffusion in dense granular fluids. Soft Matt. 17 (21), 52715277.10.1039/D1SM00422KCrossRefGoogle ScholarPubMed
Silbert, L.E., Ertaş, D., Grest, G.S., Halsey, T.C., Levine, D. & Plimpton, S.J. 2001 Granular flow down an inclined plane: Bagnold scaling and rheology. Phys. Rev. E 64, 051302.10.1103/PhysRevE.64.051302CrossRefGoogle ScholarPubMed
Silbert, L.E., Grest, G.S., Plimpton, S.J. & Levine, D. 2002 Boundary effects and self-organization in dense granular flows. Phys. Fluids 14 (8), 2637.10.1063/1.1487379CrossRefGoogle Scholar
Silbert, L.E., Landry, J.W. & Grest, G.S. 2003 Granular flow down a rough inclined plane: transition between thin and thick piles. Phys. Fluids 15 (1), 1.10.1063/1.1521719CrossRefGoogle Scholar
Taberlet, N., Richard, P., Jenkins, J.T. & Delannay, R. 2007 Density inversion in rapid granular flows: the supported regime. Eur. Phys. J. E. 22 (1), 1724.10.1140/epje/e2007-00010-5CrossRefGoogle ScholarPubMed
Thornton, A.R., Weinhart, T., Luding, S. & Bokhove, O. 2012 Frictional dependence of shallow-granular flows from discrete particle simulations. Eur. Phys. J. E. 35 (12), 127.10.1140/epje/i2012-12127-5CrossRefGoogle ScholarPubMed
Thornton, A.R., Weinhart, T., Ogarko, V. & Luding, S. 2013 Multi-scale methods for multi-component granular materials. Comput. Method. Mater. Sci. 13 (2), 197212.Google Scholar
Tsang, J.M.F., Dalziel, S.B. & Vriend, N.M. 2019 The granular Blasius problem. J. Fluid Mech. 872, 784817.10.1017/jfm.2019.357CrossRefGoogle Scholar
Tsuji, Y., Tanaka, T. & Ishida, T. 1992 Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technol. 71 (3), 239250.10.1016/0032-5910(92)88030-LCrossRefGoogle Scholar
Weinhart, T., Thornton, A.R., Luding, S. & Bokhove, O. 2012 Closure relations for shallow granular flows from particle simulations. Granul. Matt. 14 (4), 531552.10.1007/s10035-012-0355-yCrossRefGoogle Scholar
Wu, Y., Pähtz, T., Guo, Z., Jing, L., Duan, Z. & He, Z. 2025 Unified flow rule of undeveloped and fully developed dense granular flows down rough inclines. Phys. Rev. Lett. 134 (2), 028201.10.1103/PhysRevLett.134.028201CrossRefGoogle ScholarPubMed