Skip to main content

Beta-plane turbulence above monoscale topography

  • Navid C. Constantinou (a1) and William R. Young (a1)

Using a one-layer quasi-geostrophic model, we study the effect of random monoscale topography on forced beta-plane turbulence. The forcing is a uniform steady wind stress that produces both a uniform large-scale zonal flow $U(t)$ and smaller-scale macroturbulence characterized by standing and transient eddies. The large-scale flow $U$ is retarded by a combination of Ekman drag and the domain-averaged topographic form stress produced by the eddies. The topographic form stress typically balances most of the applied wind stress, while the Ekman drag provides all of the energy dissipation required to balance the wind work. A collection of statistically equilibrated numerical solutions delineate the main flow regimes and the dependence of the time average of $U$ on parameters such as the planetary potential vorticity (PV) gradient $\unicode[STIX]{x1D6FD}$ and the statistical properties of the topography. We obtain asymptotic scaling laws for the strength of the large-scale flow $U$ in the limiting cases of weak and strong forcing. If $\unicode[STIX]{x1D6FD}$ is significantly smaller than the topographic PV gradient, the flow consists of stagnant pools attached to pockets of closed geostrophic contours. The stagnant dead zones are bordered by jets and the flow through the domain is concentrated into a narrow channel of open geostrophic contours. In most of the domain, the flow is weak and thus the large-scale flow $U$ is an unoccupied mean. If $\unicode[STIX]{x1D6FD}$ is comparable to, or larger than, the topographic PV gradient, then all geostrophic contours are open and the flow is uniformly distributed throughout the domain. In this open-contour case, there is an ‘eddy saturation’ regime in which $U$ is insensitive to large changes in the wind stress. We show that eddy saturation requires strong transient eddies that act effectively as PV diffusion. This PV diffusion does not alter the kinetic energy of the standing eddies, but it does increase the topographic form stress by enhancing the correlation between the topographic slope and the standing-eddy pressure field. Using bounds based on the energy and enstrophy power integrals, we show that as the strength of the wind stress increases, the flow transitions from a regime in which the form stress balances most of the wind stress to a regime in which the form stress is very small and large transport ensues.

Corresponding author
Email address for correspondence:
Hide All
Abernathey R. & Cessi P. 2014 Topographic enhancement of eddy efficiency in baroclinic equilibration. J. Phys. Oceanogr. 44 (8), 21072126.
Arbic B. K. & Flierl G. R. 2004 Baroclinically unstable geostrophic turbulence in the limits of strong and weak bottom Ekman friction: application to midocean eddies. J. Phys. Oceanogr. 34 (10), 22572273.
Batchelor G. K. 1956 On steady laminar flow with closed streamlines at large Reynolds number. J. Fluid Mech. 1, 177190.
Böning C. W., Dispert A., Visbeck M., Rintoul S. R. & Schwarzkopf F. U. 2008 The response of the Antarctic Circumpolar Current to recent climate change. Nat. Geosci. 1 (1), 864869.
Bretherton F. P. & Karweit M. 1975 Mid-ocean mesoscale modeling. In Numerical Models of Ocean Circulation, pp. 237249. National Academy of Sciences.
Carnevale G. F. & Frederiksen J. S. 1987 Nonlinear stability and statistical mechanics of flow over topography. J. Fluid Mech. 175, 157181.
Charney J. G. & Devore J. G. 1979 Multiple flow equilibria in the atmosphere and blocking. J. Atmos. Sci. 36, 12051216.
Charney J. G., Shukla J. & Mo K. C. 1981 Comparison of a barotropic blocking theory with observation. J. Atmos. Sci. 38 (4), 762779.
Constantinou N. C. 2017 A barotropic model of eddy saturation. J. Phys. Oceanogr. (submitted) arXiv:1703.06594.
Cox S. M. & Matthews P. C. 2002 Exponential time differencing for stiff systems. J. Comput. Phys. 176 (2), 430455.
Davey M. K. 1980 A quasi-linear theory for rotating flow over topography. Part 1. Steady 𝛽-plane channel. J. Fluid Mech. 99 (02), 267292.
Donohue K. A., Tracey K. L., Watts D. R., Chidichimo M. P. & Chereskin T. K. 2016 Mean Antarctic Circumpolar Current transport measured in Drake Passage. Geophys. Res. Lett. 43, 1176011767.
Farneti R., Downes S. M., Griffies S. M., Marsland S. J., Behrens E., Bentsen M., Bi D., Bias-toch A., Böning C., Bozec A. et al. 2015 An assessment of Antarctic Circumpolar Current and Southern Ocean meridional overturning circulation during 1958–2007 in a suite of interannual CORE-II simulations. Ocean Model. 93, 84120.
Farneti R., Delworth T. L., Rosati A. J., Griffies S. M. & Zeng F. 2010 The role of mesoscale eddies in the rectification of the Southern Ocean response to climate change. J. Phys. Oceanogr. 40, 15391557.
Firing Y. L., Chereskin T. K. & Mazloff M. R. 2011 Vertical structure and transport of the Antarctic Circumpolar Current in Drake Passage from direct velocity observations. J. Geophys. Res. 116 (C8), C08015.
Goff J. A. 2010 Global prediction of abyssal hill root-mean-square heights from small-scale altimetric gravity variability. J. Geophys. Res. 115 (B12), B12104.
Gruzinov A. V., Isichenko M. B. & Kalda Ya. L. 1990 Two-dimensional turbulent diffusion. Zh. Eksp. Teor. Fiz. 97, 476 [Sov. Phys. JETP 70, 263 (1990)].
Hallberg R. & Gnanadesikan A. 2001 An exploration of the role of transient eddies in determining the transport of a zonally reentrant current. J. Phys. Oceanogr. 31 (11), 33123330.
Hallberg R. & Gnanadesikan A. 2006 The role of eddies in determining the structure and response of the wind-driven Southern Hemisphere overturning: results from the modeling eddies in the Southern Ocean (MESO) project. J. Phys. Oceanogr. 36, 22322252.
Hart J. E. 1979 Barotropic quasi-geostrophic flow over anisotropic mountains. J. Atmos. Sci. 36 (9), 17361746.
Hogg A. McC. & Blundell J. R. 2006 Interdecadal variability of the Southern Ocean. J. Phys. Oceanogr. 36, 16261645.
Hogg A. McC., Meredith M. P., Blundell J. R. & Wilson C. 2008 Eddy heat flux in the Southern Ocean: response to variable wind forcing. J. Clim. 21, 608620.
Hogg A. McC., Meredith M. P., Chambers D. P., Abrahamsen E. P., Hughes C. W. & Morrison A. K. 2015 Recent trends in the Southern Ocean eddy field. J. Geophys. Res. 120, 111.
Holloway G. 1987 Systematic forcing of large-scale geophysical flows by eddy–topography interaction. J. Fluid Mech. 184, 463476.
Ingersoll A. P. 1969 Inertial Taylor columns and Jupiter’s Great Red Spot. J. Atmos. Sci. 26, 744752.
Isichenko M. B. 1992 Percolation, statistical topography, and transport in random media. Rev. Mod. Phys. 64 (4), 9611043.
Isichenko M. B., Kalda Ya. L., Tatarinova E. B., Tel’kovskaya O. V. & Yan’kov V. V. 1989 Diffusion in a medium with vortex flow. Zh. Eksp. Teor. Fiz. 96, 913925; [Sov. Phys. JETP 69, 3 (1989)].
Källén E. 1982 Bifurcation properties of quasi-geostrophic, barotropic models and their relation to atmospheric blocking. Tellus 34 (3), 255265.
Kassam A.-K. & Trefethen L. N. 2005 Fourth-order time-stepping for stiff PDEs. SIAM J. Sci. Comput. 26 (4), 12141233.
Koenig Z., Provost C., Park Y.-H., Ferrari R. & Sennéchael N. 2016 Anatomy of the Antarctic Circumpolar Current volume transports through Drake Passage. J. Geophys. Res. 121 (4), 25722595.
Legras B. & Ghil M. 1985 Persistent anomalies, blocking and variations in atmospheric predictability. J. Atmos. Sci. 42, 433471.
Mak J., Marshall D. P., Maddison J. R. & Bachman S. D. 2017 Emergent eddy saturation from an energy constrained parameterisation. Ocean Model. 112, 125138.
Marshall G. J. 2003 Trends in the Southern Annular Mode from observations and reanalyses. J. Clim. 16, 41344143.
Marshall D. P., Abhaum M. H. P., Maddison J. R., Munday D. R. & Novak L. 2016 Eddy saturation and frictional control of the Antarctic Circumpolar Current. Geophys. Res. Lett. 44, 17.
Meredith M. P., Naveira Garabato A. C., Hogg A. McC. & Farneti R. 2012 Sensitivity of the overturning circulation in the Southern Ocean to decadal changes in wind forcing. J. Clim. 25, 99110.
Morisson A. K. & Hogg A. McC. 2013 On the relationship between Southern Ocean overturning and ACC transport. J. Phys. Oceanogr. 43, 140148.
Munday D. R., Johnson H. L. & Marshall D. P. 2013 Eddy saturation of equilibrated circumpolar currents. J. Phys. Oceanogr. 43, 507532.
Munk W. H. & Palmén E. 1951 Note on the dynamics of the Antarctic Circumpolar Current. Tellus 3, 5355.
Nadeau L.-P. & Ferrari R. 2015 The role of closed gyres in setting the zonal transport of the Antarctic Circumpolar Current. J. Phys. Oceanogr. 45, 14911509.
Nadeau L.-P. & Straub D. N. 2009 Basin and channel contributions to a model Antarctic Circumpolar Current. J. Phys. Oceanogr. 39 (4), 9861002.
Nadeau L.-P. & Straub D. N. 2012 Influence of wind stress, wind stress curl, and bottom friction on the transport of a model Antarctic Circumpolar Current. J. Phys. Oceanogr. 42 (1), 207222.
Pedlosky J. 1981 Resonant topographic waves in barotropic and baroclinic flows. J. Atmos. Sci. 38 (12), 26262641.
Rambaldi S. & Flierl G. R. 1983 Form drag instability and multiple equilibria in the barotropic case Il. Nuovo Cimento C 6 (5), 505522.
Rambaldi S. & Mo K. C. 1984 Forced stationary solutions in a barotropic channel: multiple equilibria and theory of nonlinear resonance. J. Atmos. Sci. 41 (21), 31353146.
Rhines P. B. & Young W. R. 1982 Homogenization of potential vorticity in planetary gyres. J. Fluid Mech. 122, 347367.
Rhines P. B. & Young W. R. 1983 How rapidly is a passive scalar mixed within closed streamlines? J. Fluid Mech. 133, 133145.
Straub D. N. 1993 On the transport and angular momentum balance of channel models of the Antarctic Circumpolar Current. J. Phys. Oceanogr. 23, 776782.
Swart N. C. & Fyfe J. C. 2012 Observed and simulated changes in the Southern Hemisphere surface westerly wind-stress. Geophys. Res. Lett. 39 (16), L16711.
Tansley C. E. & Marshall D. P. 2001 On the dynamics of wind-driven circumpolar currents. J. Phys. Oceanogr. 31, 32583273.
Thompson D. W. J. & Solomon S. 2002 Interpretation of recent Southern Hemisphere climate change. Science 296, 895899.
Tung K.-K. & Rosenthal A. J. 1985 Theories of multiple equilibria – a critical reexamination. Part I: barotropic models. J. Atmos. Sci. 42, 28042819.
Uchimoto K. & Kubokawa A. 2005 Form drag caused by topographically forced waves in a barotropic 𝛽 channel: effect of higher mode resonance. J. Oceanogr. 61 (2), 197211.
Yoden S. 1985 Bifurcation properties of a quasi-geostrophic, barotropic, low-order model with topography. J. Meteor. Soc. Japan. Ser. II 63 (4), 535546.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 5
Total number of PDF views: 86 *
Loading metrics...

Abstract views

Total abstract views: 197 *
Loading metrics...

* Views captured on Cambridge Core between 24th August 2017 - 21st January 2018. This data will be updated every 24 hours.