Hostname: page-component-7dd5485656-bt4hw Total loading time: 0 Render date: 2025-10-31T05:51:27.220Z Has data issue: false hasContentIssue false

Bifurcation of cellular detonation structure in a mixture with two-stage reactions

Published online by Cambridge University Press:  29 October 2025

Jie Sun
Affiliation:
SKLTCS, HEDPS, School of Mechanics and Engineering Science, Peking University , Beijing 100871, PR China
Zheng Chen*
Affiliation:
SKLTCS, HEDPS, School of Mechanics and Engineering Science, Peking University , Beijing 100871, PR China
*
Corresponding author: Zheng Chen, cz@pku.edu.cn

Abstract

We numerically investigate the cellular detonation dynamics in ethylene/oxygen/ozone/nitrogen mixtures considering detailed chemical kinetics. The aim is to elucidate emergent detonation structures and reveal the transition mechanism from single- to double-cellular structures. Ozone is used to induce two-stage reactions within the mixture. Through systematic initiation strength analysis, we demonstrate two distinct propagation regimes: (i) under strong initiation, a stable double-cellular detonation is established; (ii) weak initiation triggers a multi-stage evolutionary process, beginning with a low-speed single-cellular detonation in the initiation zone. During the initial weak stage, the detonation propagates at a quasi-steady velocity with uniform cellular patterning. The subsequent transition phase features spontaneous acceleration accompanied by structural bifurcation into double cells, ultimately stabilising in a normal stage with sustained double-cellular structures. Further analysis reveals that the weak-stage dynamics is governed exclusively by first-stage chemical reactions, resulting in a single-cellular structure propagating at a velocity much lower than the Chapman–Jouguet speed. In contrast, the double-cellular structure observed at the normal stage results from the two-stage exothermic reactions. Thermodynamic perturbations arising from cellular instability and fluid dynamic instability are identified as critical drivers for the transition from single- to double-cellular detonation. Besides, conditions for the formation of double-cellular detonation are explored, and two qualitative requirements are summarised: the reactions of the two stages must proceed as independently as possible, and both heat releases from the two stages must be high enough to sustain the triple-shock configurations.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Chinnayya, A., Hadjadj, A. & Ngomo, D. 2013 Computational study of detonation wave propagation in narrow channels. Phys. Fluids 25 (3), 036101.10.1063/1.4792708CrossRefGoogle Scholar
Davidenko, D., Mével, R. & Dupré, G. 2011 Numerical study of the detonation structure in rich H2−NO2/N2O4 and very lean H2−N2O mixtures. Shock Waves 21 (2), 8599.10.1007/s00193-011-0297-zCrossRefGoogle Scholar
Diakow, P., Cross, M. & Ciccarelli, G. 2015 Detonation characteristics of dimethyl ether and ethanol–air mixtures. Shock Waves 25 (3), 231238.CrossRefGoogle Scholar
Gao, X., Zhang, Y., Adusumilli, S., Seitzman, J., Sun, W., Ombrello, T. & Carter, C. 2015 The effect of ozone addition on laminar flame speed. Combust. Flame 162 (10), 39143924.10.1016/j.combustflame.2015.07.028CrossRefGoogle Scholar
Gao, Y., Lee, J.H.S. & Ng, H.D. 2014 Velocity fluctuation near the detonation limits. Combust. Flame 161 (11), 29822990.10.1016/j.combustflame.2014.04.020CrossRefGoogle Scholar
Guilly, V., Khasainov, B., Presles, H.-N. & Desbordes, D. 2006 Simulation numérique des détonations à double structure cellulaire. C. R. Méc. 334 (11), 679685.10.1016/j.crme.2006.05.002CrossRefGoogle Scholar
Hairer, E., Nørsett, S.P. & Wanner, G. 1996 Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer-Verlag.10.1007/978-3-642-05221-7CrossRefGoogle Scholar
Joubert, F., Desbordes, D. & Presles, H.-N. 2008 Detonation cellular structure in NO2/N2O4–fuel gaseous mixtures. Combust. Flame 152 (4), 482495.10.1016/j.combustflame.2007.11.005CrossRefGoogle Scholar
Khasainov, B., Virot, F., Presles, H.N. & Desbordes, D. 2012 Parametric study of double cellular detonation structure. Shock Waves 23 (3), 213220.10.1007/s00193-012-0419-2CrossRefGoogle Scholar
Lee, J.H.S. 2008 The Detonation Phenomenon. Cambridge University Press 10.1017/CBO9780511754708CrossRefGoogle Scholar
Lee, J.H.S., Knystautas, R. & Yoshikawa, N. 1978 Photochemical initiation of gaseous detonations. Acta Astronaut. 5, 971982.10.1016/0094-5765(78)90003-6CrossRefGoogle Scholar
van Leer, B. 1979 Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32 (1), 101136.10.1016/0021-9991(79)90145-1CrossRefGoogle Scholar
Mével, R. & Gallier, S. 2018 Structure of detonation propagating in lean and rich dimethyl ether–oxygen mixtures. Shock Waves 28 (5), 955966.10.1007/s00193-018-0837-xCrossRefGoogle Scholar
Ng, H.D., Chao, J., Yatsufusa, T. & Lee, J.H.S. 2009 Measurement and chemical kinetic prediction of detonation sensitivity and cellular structure characteristics in dimethyl ether–oxygen mixtures. Fuel 88 (1), 124131.10.1016/j.fuel.2008.07.029CrossRefGoogle Scholar
Presles, H.N., Desbordes, D., Guirard, M. & Guerraud, C. 1996 Gaseous nitromethane and nitromethane–oxygen mixtures: a new detonation structure. Shock Waves 6, 111114.10.1007/BF02515194CrossRefGoogle Scholar
Rettenmaier, D., Deising, D., Ouedraogo, Y., Gjonaj, E., Gersem, H.D., Bothe, D., Tropea, C.Marschall, H. 2019 Load balanced 2D and 3D adaptive mesh refinement in OpenFOAM. SoftwareX 10, 100317.10.1016/j.softx.2019.100317CrossRefGoogle Scholar
Sturtzer, M.O., Lamoureux, N., Matignon, C., Desbordes, D. & Presles, H.N. 2005 On the origin of the double cellular structure of the detonation in gaseous nitromethane and its mixtures with oxygen. Shock Waves 14 (1–2), 4551.10.1007/s00193-004-0236-3CrossRefGoogle Scholar
Sugiyama, Y. & Matsuo, A. 2011 On the characteristics of two-dimensional double cellular detonations with two successive reactions model. Proc. Combust. Inst. 33 (2), 22272233.10.1016/j.proci.2010.06.137CrossRefGoogle Scholar
Sun, J., Tian, B. & Chen, Z. 2023 a Effect of ozone addition and ozonolysis reaction on the detonation properties of C2H4/O2/Ar mixtures. Proc. Combust. Inst. 39 (3), 27972806.10.1016/j.proci.2022.09.029CrossRefGoogle Scholar
Sun, J., Wang, Y., Tian, B. & Chen, Z. 2023 b detonationFoam: an open-source solver for simulation of gaseous detonation based on OpenFOAM. Comput. Phys. Commun. 292, 108859.10.1016/j.cpc.2023.108859CrossRefGoogle Scholar
Sun, J., Yang, P. & Chen, Z. 2025 a Dynamic interaction patterns of oblique detonation waves with boundary layers in hypersonic reactive flows. Combust. Flame 271, 113832.10.1016/j.combustflame.2024.113832CrossRefGoogle Scholar
Sun, J., Yang, P., Wang, Y. & Chen, Z. 2024 Numerical study on detonation initiation by multiple hot spots. Proc. Combust. Inst. 40 (1–4), 105191.10.1016/j.proci.2024.105191CrossRefGoogle Scholar
Sun, J., Yu, D., Yang, P., Wang, Y., Wang, S. & Chen, Z. 2025 b Detonation initiation induced by dual hot spots: a computational study. J. Fluid Mech. 1010, A60.10.1017/jfm.2025.351CrossRefGoogle Scholar
Suryanarayan, R., Dushe, R., Hytovick, R., Berson, J., Ahmed, K.A. & Yang, S. 2025 Micro-Jetting Dynamics in Channel Detonations of High-Activation Energy Mixtures. AIAA SCITECH 2025 Forum.Google Scholar
Vasil’ev, A.A., Vasiliev, V.A. & Trotsyuk, A.V. 2010 Bifurcation structures in gas detonation. Combust. Explos. Shock Waves 46 (2), 196206.10.1007/s10573-010-0030-8CrossRefGoogle Scholar
Virot, F., Khasainov, B., Desbordes, D. & Presles, H.N. 2010 Two-cell detonation: losses effects on cellular structure and propagation in rich H2–NO2/N2O4–Ar mixtures. Shock Waves 20 (6), 457465.10.1007/s00193-010-0283-xCrossRefGoogle Scholar
Wang, Y., Huang, C., Deiterding, R., Chen, H. & Chen, Z. 2023 Numerical studies on detonation propagation in inhomogeneous mixtures with periodic reactant concentration gradient. J. Fluid Mech. 955, A23.CrossRefGoogle Scholar
Wang, Z.H., Yang, L., Li, B., Li, Z.S., Sun, Z.W., Aldén, M., Cen, K.F. & Konnov, A.A. 2012 Investigation of combustion enhancement by ozone additive in CH4/air flames using direct laminar burning velocity measurements and kinetic simulations. Combust. Flame 159 (1), 120129.10.1016/j.combustflame.2011.06.017CrossRefGoogle Scholar
Xi, X., Teng, H., Chen, Z. & Yang, P. 2022 Effects of longitudinal disturbances on two-dimensional detonation waves. Phys. Rev. Fluids 7 (4), 043201.10.1103/PhysRevFluids.7.043201CrossRefGoogle Scholar
Xiao, Q., Sow, A., Maxwell, B.M. & Radulescu, M.I. 2021 Effect of boundary layer losses on 2D detonation cellular structures. Proc. Combust. Inst. 38 (3), 36413649.10.1016/j.proci.2020.07.068CrossRefGoogle Scholar
Xie, W., Zhang, R., Lai, J. & Li, H. 2018 An accurate and robust HLLC-type Riemann solver for the compressible Euler system at various Mach numbers. Intl J. Numer. Meth. Fluids 89 (10), 430463.10.1002/fld.4704CrossRefGoogle Scholar
Zhang, F. 2012 Detonation Dynamics. Springer.Google Scholar
Supplementary material: File

Sun and Chen supplementary material

Sun and Chen supplementary material
Download Sun and Chen supplementary material(File)
File 6.3 MB