Skip to main content
×
×
Home

Bifurcations in a quasi-two-dimensional Kolmogorov-like flow

  • Jeffrey Tithof (a1), Balachandra Suri (a1), Ravi Kumar Pallantla (a1), Roman O. Grigoriev (a1) and Michael F. Schatz (a1)...
Abstract

We present a combined experimental and theoretical study of the primary and secondary instabilities in a Kolmogorov-like flow. The experiment uses electromagnetic forcing with an approximately sinusoidal spatial profile to drive a quasi-two-dimensional (Q2D) shear flow in a thin layer of electrolyte suspended on a thin lubricating layer of a dielectric fluid. Theoretical analysis is based on a two-dimensional (2D) model (Suri et al., Phys. Fluids, vol. 26 (5), 2014, 053601), derived from first principles by depth-averaging the full three-dimensional Navier–Stokes equations. As the strength of the forcing is increased, the Q2D flow in the experiment undergoes a series of bifurcations, which is compared with results from direct numerical simulations of the 2D model. The effects of confinement and the forcing profile are studied by performing simulations that assume spatial periodicity and strictly sinusoidal forcing, as well as simulations with realistic no-slip boundary conditions and an experimentally validated forcing profile. We find that only the simulation subject to physical no-slip boundary conditions and a realistic forcing profile provides close, quantitative agreement with the experiment. Our analysis offers additional validation of the 2D model as well as a demonstration of the importance of properly modelling the forcing and boundary conditions.

Copyright
Corresponding author
Email address for correspondence: jtithof@gatech.edu
References
Hide All
Akkermans, R. A. D., Kamp, L. P. J., Clercx, H. J. H. & van Heijst, G. J. F. 2010 Three-dimensional flow in electromagnetically driven shallow two-layer fluids. Phys. Rev. E 82, 026314.
Akkermans, R. A. D., Kamp, L. P. J., Clercx, H. J. H. & Van Heijst, G. J. F. 2008 Intrinsic three-dimensionality in electromagnetically driven shallow flows. Europhys. Lett. 83 (2), 24001.
Armbruster, D., Heiland, R., Kostelich, E. J. & Nicolaenko, B. 1992 Phase-space analysis of bursting behavior in Kolmogorov flow. Physica D 58 (1), 392401.
Armbruster, D., Nicolaenko, B., Smaoui, N. & Chossat, P. 1996 Symmetries and dynamics for 2-D Navier–Stokes flow. Physica D 95 (1), 8193.
Armfield, S. & Street, R. 1999 The fractional-step method for the Navier–Stokes equations on staggered grids: the accuracy of three variations. J. Comput. Phys. 153 (2), 660665.
Arnold, V. I. & Meshalkin, L. D. 1960 Seminar led by A. N. Kolmogorov on selected problems of analysis (1958–1959). Usp. Mat. Nauk 15 (247), 2024.
Ascher, U. M., Ruuth, S. J. & Wetton, B. T. R. 1995 Implicit–explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32 (3), 797823.
Batchaev, A. M. & Dowzhenko, V. A. 1983 Experimental modeling of stability loss in periodic zonal flows. Dokl. Akad. Nauk 273, 582.
Batchaev, A. M. & Ponomarev, V. M. 1989 Experimental and theoretical investigation of Kolmogorov flow on a cylindrical surface. Fluid Dyn. 24 (5), 675680.
Boffetta, G. & Ecke, R. E. 2012 Two-dimensional turbulence. Annu. Rev. Fluid Mech. 44, 427451.
Bondarenko, N. F., Gak, M. Z. & Dolzhanskiy, F. V. 1979 Laboratory and theoretical models of plane periodic flows. Izv. Akad. Nauk SSSR Fiz. Atmos. Okeana 15 (10), 711716.
Burgess, J. M., Bizon, C., McCormick, W. D., Swift, J. B. & Swinney, H. L. 1999 Instability of the Kolmogorov flow in a soap film. Phys. Rev. E 60, 715721.
Canuto, C., Hussaini, M. Y., Quarteroni, A. & Zang, T. A. 1988 Spectral Methods in Fluid Dynamics. Springer.
Chandler, G. J. & Kerswell, R. R. 2013 Invariant recurrent solutions embedded in a turbulent two-dimensional Kolmogorov flow. J. Fluid Mech. 722, 554595.
Couder, Y. 1984 Two-dimensional grid turbulence in a thin liquid film. J. Phys. Lett. 45 (8), 353360.
Couder, Y., Chomaz, J. M. & Rabaud, M. 1989 On the hydrodynamics of soap films. Physica D 37 (1), 384405.
Dennis, D. J. C. & Sogaro, F. M 2014 Distinct organizational states of fully developed turbulent pipe flow. Phys. Rev. Lett. 113 (23), 234501.
Dolzhanskii, F. V., Krymov, V. A. & Manin, D. Yu. 1992 An advanced experimental investigation of quasi-two-dimensional shear flows. J. Fluid Mech. 241, 705722.
Dolzhansky, F. V. 2013 Fundamentals of Geophysical Hydrodynamics, Encyclopaedia of Mathematical Sciences, vol. 103. Springer (translated by B. A. Khesin).
Dovzhenko, V. A., Krymov, V. A. & Ponomarev, V. M. 1984 Experimental and theoretical investigation of the shear flow generated by an axially symmetric force. Izv. Akad. Nauk SSSR Fiz. Atmos. Okeana 20, 693.
Dovzhenko, V. A., Obukhov, A. M. & Ponomarev, V. M. 1981 Generation of vortices in an axisymmetric shear flow. Fluid Dyn. 16 (4), 510518.
Drew, B., Charonko, J. & Vlachos, P. P.2013 QI – Quantitative Imaging (PIV and more). Available at: https://sourceforge.net/projects/qi-tools/.
Eckhardt, B., Schneider, T. M., Hof, B. & Westerweel, J. 2007 Turbulence transition in pipe flow. Annu. Rev. Fluid Mech. 39 (1), 447468.
Eckstein, A. & Vlachos, P. P. 2009 Digital particle image velocimetry (DPIV) robust phase correlation. Meas. Sci. Technol. 20 (5), 055401.
Gallet, B. & Young, W. R. 2013 A two-dimensional vortex condensate at high Reynolds number. J. Fluid Mech. 715, 359388.
Gibson, J. F., Halcrow, J. & Cvitanović, P. 2009 Equilibrium and travelling-wave solutions of plane Couette flow. J. Fluid Mech. 638, 243266.
Green, J. S. A. 1974 Two-dimensional turbulence near the viscous limit. J. Fluid Mech. 62 (02), 273287.
Haller, G. 2015 Lagrangian coherent structures. Annu. Rev. Fluid Mech. 47, 137162.
Haller, G. & Yuan, G. 2000 Lagrangian coherent structures and mixing in two-dimensional turbulence. Physica D 147 (3), 352370.
Harlow, F. H. & Welch, J. E. 1965 Numerical calculation of time dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8 (12), 21822189.
Hof, B., van Doorne, C. W. H., Westerweel, J., Nieuwstadt, F. T. M., Faisst, H., Eckhardt, B., Wedin, H., Kerswell, R. R. & Waleffe, F. 2004 Experimental observation of nonlinear traveling waves in turbulent pipe flow. Science 305 (5690), 15941598.
Hussain, A. K. M. F. 1986 Coherent structures and turbulence. J. Fluid Mech. 173, 303356.
Iudovich, V. I. 1965 Example of the generation of a secondary stationary or periodic flow when there is loss of stability of the laminar flow of a viscous incompressible fluid. Z. Angew. Math. Mech. J. Appl. Math. Mech. 29 (3), 527544.
Jüttner, B., Marteau, D., Tabeling, P. & Thess, A. 1997 Numerical simulations of experiments on quasi-two-dimensional turbulence. Phys. Rev. E 55, 54795488.
Kawahara, G., Uhlmann, M. & van Veen, L. 2012 The significance of simple invariant solutions in turbulent flows. Annu. Rev. Fluid Mech. 44, 203225.
Kelley, C. 2003 Solving Nonlinear Equations with Newton’s Method. SIAM.
Kelley, D. H. & Ouellette, N. T. 2011 Onset of three-dimensionality in electromagnetically driven thin-layer flows. Phys. Fluids 23 (4), 045103.
Kerswell, R. R. 2005 Recent progress in understanding the transition to turbulence in a pipe. Nonlinearity 18 (6), R17.
Kliatskin, V. I. 1972 On the nonlinear theory of stability of periodic flows. Z. Angew. Math. Mech. J. Appl. Math. Mech. 36 (2), 243250.
Krymov, V. A. 1989 Stability and supercritical regimes of quasi-two-dimensional shear flow in the presence of external friction (experiment). Fluid Dyn. 24 (2), 170176.
de Lozar, A., Mellibovsky, F., Avila, M. & Hof, B. 2012 Edge state in pipe flow experiments. Phys. Rev. Lett. 108, 214502.
Lucas, D. & Kerswell, R. R. 2014 Spatiotemporal dynamics in two-dimensional Kolmogorov flow over large domains. J. Fluid Mech. 750, 518554.
Lucas, D. & Kerswell, R. R. 2015 Recurrent flow analysis in spatiotemporally chaotic 2-dimensional Kolmogorov flow. Phys. Fluids 27 (4), 045106.
Marteau, D., Cardoso, O. & Tabeling, P. 1995 Equilibrium states of two-dimensional turbulence: an experimental study. Phys. Rev. E 51, 51245127.
Meshalkin, L. D. & Sinai, I. G. 1961 Investigation of the stability of a stationary solution of a system of equations for the plane movement of an incompressible viscous liquid. Z. Angew. Math. Mech. J. Appl. Math. Mech. 25 (6), 17001705.
Mitchell, R.2013 Transition to turbulence and mixing in a quasi-two-dimensional Lorentz force-driven Kolmogorov flow. PhD thesis, Georgia Institute of Technology.
Nagata, M. 1997 Three-dimensional traveling-wave solutions in plane Couette flow. Phys. Rev. E 55, 20232025.
Nepomniashchii, A. A. 1976 On stability of secondary flows of a viscous fluid in unbounded space. Z. Angew. Math. Mech. J. Appl. Math. Mech. 40 (5), 886891.
Obukhov, A. M. 1983 Kolmogorov flow and laboratory simulation of it. Russ. Math. Surv. 38 (4), 113.
Paret, J. & Tabeling, P. 1997 Experimental observation of the two-dimensional inverse energy cascade. Phys. Rev. Lett. 79, 41624165.
Rivera, M. K. & Ecke, R. E. 2005 Pair dispersion and doubling time statistics in two-dimensional turbulence. Phys. Rev. Lett. 95, 194503.
Smaoui, N. 2001 A model for the unstable manifold of the bursting behavior in the 2D Navier–Stokes flow. SIAM J. Sci. Comput. 23 (3), 824839.
Sommeria, J. 1986 Experimental study of the two-dimensional inverse energy cascade in a square box. J. Fluid Mech. 170, 139168.
Sommeria, J., Meyers, S. D. & Swinney, H. L. 1988 Laboratory simulation of Jupiter’s great red spot. Nature 331 (6158), 689693.
Sommeria, J. & Moreau, R. 1982 Why, how, and when, MHD turbulence becomes two-dimensional. J. Fluid Mech. 118, 507518.
Suri, B., Tithof, J., Grigoriev, R. O. & Schatz, M. F. 2017 Forecasting fluid flows using the geometry of turbulence. Phys. Rev. Lett. 118, 114501.
Suri, B., Tithof, J., Mitchell, R., Grigoriev, R. O. & Schatz, M. F. 2014 Velocity profile in a two-layer Kolmogorov-like flow. Phys. Fluids 26 (5), 053601.
Tabeling, P., Burkhart, S., Cardoso, O. & Willaime, H. 1991 Experimental study of freely decaying two-dimensional turbulence. Phys. Rev. Lett. 67, 37723775.
Thess, A. 1992 Instabilities in two-dimensional spatially periodic flows. Part I: Kolmogorov flow. Phys. Fluids A 4 (7), 13851395.
Waleffe, F. 1998 Three-dimensional coherent states in plane shear flows. Phys. Rev. Lett. 81 (19), 4140.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Type Description Title
VIDEO
Movie

Tithof et al. supplementary movie
A side-by-side animation comparing the time-periodic flows observed in the experiment and the NPS (with depth-averaged parameters). In each case, the Reynolds number was chosen above the onset of the secondary instability so that the oscillations are clearly visible.

 Video (24.1 MB)
24.1 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed