Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-24T21:44:51.428Z Has data issue: false hasContentIssue false

Bifurcations in a quasi-two-dimensional Kolmogorov-like flow

Published online by Cambridge University Press:  12 September 2017

Jeffrey Tithof*
Affiliation:
Center for Nonlinear Science, School of Physics, Georgia Institute of Technology, Atlanta, GA 30332-0430, USA
Balachandra Suri
Affiliation:
Center for Nonlinear Science, School of Physics, Georgia Institute of Technology, Atlanta, GA 30332-0430, USA
Ravi Kumar Pallantla
Affiliation:
Center for Nonlinear Science, School of Physics, Georgia Institute of Technology, Atlanta, GA 30332-0430, USA
Roman O. Grigoriev
Affiliation:
Center for Nonlinear Science, School of Physics, Georgia Institute of Technology, Atlanta, GA 30332-0430, USA
Michael F. Schatz
Affiliation:
Center for Nonlinear Science, School of Physics, Georgia Institute of Technology, Atlanta, GA 30332-0430, USA
*
Email address for correspondence: jtithof@gatech.edu

Abstract

We present a combined experimental and theoretical study of the primary and secondary instabilities in a Kolmogorov-like flow. The experiment uses electromagnetic forcing with an approximately sinusoidal spatial profile to drive a quasi-two-dimensional (Q2D) shear flow in a thin layer of electrolyte suspended on a thin lubricating layer of a dielectric fluid. Theoretical analysis is based on a two-dimensional (2D) model (Suri et al., Phys. Fluids, vol. 26 (5), 2014, 053601), derived from first principles by depth-averaging the full three-dimensional Navier–Stokes equations. As the strength of the forcing is increased, the Q2D flow in the experiment undergoes a series of bifurcations, which is compared with results from direct numerical simulations of the 2D model. The effects of confinement and the forcing profile are studied by performing simulations that assume spatial periodicity and strictly sinusoidal forcing, as well as simulations with realistic no-slip boundary conditions and an experimentally validated forcing profile. We find that only the simulation subject to physical no-slip boundary conditions and a realistic forcing profile provides close, quantitative agreement with the experiment. Our analysis offers additional validation of the 2D model as well as a demonstration of the importance of properly modelling the forcing and boundary conditions.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akkermans, R. A. D., Kamp, L. P. J., Clercx, H. J. H. & van Heijst, G. J. F. 2010 Three-dimensional flow in electromagnetically driven shallow two-layer fluids. Phys. Rev. E 82, 026314.Google ScholarPubMed
Akkermans, R. A. D., Kamp, L. P. J., Clercx, H. J. H. & Van Heijst, G. J. F. 2008 Intrinsic three-dimensionality in electromagnetically driven shallow flows. Europhys. Lett. 83 (2), 24001.Google Scholar
Armbruster, D., Heiland, R., Kostelich, E. J. & Nicolaenko, B. 1992 Phase-space analysis of bursting behavior in Kolmogorov flow. Physica D 58 (1), 392401.Google Scholar
Armbruster, D., Nicolaenko, B., Smaoui, N. & Chossat, P. 1996 Symmetries and dynamics for 2-D Navier–Stokes flow. Physica D 95 (1), 8193.Google Scholar
Armfield, S. & Street, R. 1999 The fractional-step method for the Navier–Stokes equations on staggered grids: the accuracy of three variations. J. Comput. Phys. 153 (2), 660665.CrossRefGoogle Scholar
Arnold, V. I. & Meshalkin, L. D. 1960 Seminar led by A. N. Kolmogorov on selected problems of analysis (1958–1959). Usp. Mat. Nauk 15 (247), 2024.Google Scholar
Ascher, U. M., Ruuth, S. J. & Wetton, B. T. R. 1995 Implicit–explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32 (3), 797823.Google Scholar
Batchaev, A. M. & Dowzhenko, V. A. 1983 Experimental modeling of stability loss in periodic zonal flows. Dokl. Akad. Nauk 273, 582.Google Scholar
Batchaev, A. M. & Ponomarev, V. M. 1989 Experimental and theoretical investigation of Kolmogorov flow on a cylindrical surface. Fluid Dyn. 24 (5), 675680.CrossRefGoogle Scholar
Boffetta, G. & Ecke, R. E. 2012 Two-dimensional turbulence. Annu. Rev. Fluid Mech. 44, 427451.CrossRefGoogle Scholar
Bondarenko, N. F., Gak, M. Z. & Dolzhanskiy, F. V. 1979 Laboratory and theoretical models of plane periodic flows. Izv. Akad. Nauk SSSR Fiz. Atmos. Okeana 15 (10), 711716.Google Scholar
Burgess, J. M., Bizon, C., McCormick, W. D., Swift, J. B. & Swinney, H. L. 1999 Instability of the Kolmogorov flow in a soap film. Phys. Rev. E 60, 715721.Google Scholar
Canuto, C., Hussaini, M. Y., Quarteroni, A. & Zang, T. A. 1988 Spectral Methods in Fluid Dynamics. Springer.CrossRefGoogle Scholar
Chandler, G. J. & Kerswell, R. R. 2013 Invariant recurrent solutions embedded in a turbulent two-dimensional Kolmogorov flow. J. Fluid Mech. 722, 554595.Google Scholar
Couder, Y. 1984 Two-dimensional grid turbulence in a thin liquid film. J. Phys. Lett. 45 (8), 353360.Google Scholar
Couder, Y., Chomaz, J. M. & Rabaud, M. 1989 On the hydrodynamics of soap films. Physica D 37 (1), 384405.Google Scholar
Dennis, D. J. C. & Sogaro, F. M 2014 Distinct organizational states of fully developed turbulent pipe flow. Phys. Rev. Lett. 113 (23), 234501.CrossRefGoogle ScholarPubMed
Dolzhanskii, F. V., Krymov, V. A. & Manin, D. Yu. 1992 An advanced experimental investigation of quasi-two-dimensional shear flows. J. Fluid Mech. 241, 705722.Google Scholar
Dolzhansky, F. V. 2013 Fundamentals of Geophysical Hydrodynamics, Encyclopaedia of Mathematical Sciences, vol. 103. Springer (translated by B. A. Khesin).Google Scholar
Dovzhenko, V. A., Krymov, V. A. & Ponomarev, V. M. 1984 Experimental and theoretical investigation of the shear flow generated by an axially symmetric force. Izv. Akad. Nauk SSSR Fiz. Atmos. Okeana 20, 693.Google Scholar
Dovzhenko, V. A., Obukhov, A. M. & Ponomarev, V. M. 1981 Generation of vortices in an axisymmetric shear flow. Fluid Dyn. 16 (4), 510518.CrossRefGoogle Scholar
Drew, B., Charonko, J. & Vlachos, P. P.2013 QI – Quantitative Imaging (PIV and more). Available at: https://sourceforge.net/projects/qi-tools/.Google Scholar
Eckhardt, B., Schneider, T. M., Hof, B. & Westerweel, J. 2007 Turbulence transition in pipe flow. Annu. Rev. Fluid Mech. 39 (1), 447468.Google Scholar
Eckstein, A. & Vlachos, P. P. 2009 Digital particle image velocimetry (DPIV) robust phase correlation. Meas. Sci. Technol. 20 (5), 055401.Google Scholar
Gallet, B. & Young, W. R. 2013 A two-dimensional vortex condensate at high Reynolds number. J. Fluid Mech. 715, 359388.Google Scholar
Gibson, J. F., Halcrow, J. & Cvitanović, P. 2009 Equilibrium and travelling-wave solutions of plane Couette flow. J. Fluid Mech. 638, 243266.Google Scholar
Green, J. S. A. 1974 Two-dimensional turbulence near the viscous limit. J. Fluid Mech. 62 (02), 273287.Google Scholar
Haller, G. 2015 Lagrangian coherent structures. Annu. Rev. Fluid Mech. 47, 137162.CrossRefGoogle Scholar
Haller, G. & Yuan, G. 2000 Lagrangian coherent structures and mixing in two-dimensional turbulence. Physica D 147 (3), 352370.Google Scholar
Harlow, F. H. & Welch, J. E. 1965 Numerical calculation of time dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8 (12), 21822189.CrossRefGoogle Scholar
Hof, B., van Doorne, C. W. H., Westerweel, J., Nieuwstadt, F. T. M., Faisst, H., Eckhardt, B., Wedin, H., Kerswell, R. R. & Waleffe, F. 2004 Experimental observation of nonlinear traveling waves in turbulent pipe flow. Science 305 (5690), 15941598.Google Scholar
Hussain, A. K. M. F. 1986 Coherent structures and turbulence. J. Fluid Mech. 173, 303356.Google Scholar
Iudovich, V. I. 1965 Example of the generation of a secondary stationary or periodic flow when there is loss of stability of the laminar flow of a viscous incompressible fluid. Z. Angew. Math. Mech. J. Appl. Math. Mech. 29 (3), 527544.Google Scholar
Jüttner, B., Marteau, D., Tabeling, P. & Thess, A. 1997 Numerical simulations of experiments on quasi-two-dimensional turbulence. Phys. Rev. E 55, 54795488.Google Scholar
Kawahara, G., Uhlmann, M. & van Veen, L. 2012 The significance of simple invariant solutions in turbulent flows. Annu. Rev. Fluid Mech. 44, 203225.Google Scholar
Kelley, C. 2003 Solving Nonlinear Equations with Newton’s Method. SIAM.Google Scholar
Kelley, D. H. & Ouellette, N. T. 2011 Onset of three-dimensionality in electromagnetically driven thin-layer flows. Phys. Fluids 23 (4), 045103.CrossRefGoogle Scholar
Kerswell, R. R. 2005 Recent progress in understanding the transition to turbulence in a pipe. Nonlinearity 18 (6), R17.Google Scholar
Kliatskin, V. I. 1972 On the nonlinear theory of stability of periodic flows. Z. Angew. Math. Mech. J. Appl. Math. Mech. 36 (2), 243250.Google Scholar
Krymov, V. A. 1989 Stability and supercritical regimes of quasi-two-dimensional shear flow in the presence of external friction (experiment). Fluid Dyn. 24 (2), 170176.Google Scholar
de Lozar, A., Mellibovsky, F., Avila, M. & Hof, B. 2012 Edge state in pipe flow experiments. Phys. Rev. Lett. 108, 214502.CrossRefGoogle Scholar
Lucas, D. & Kerswell, R. R. 2014 Spatiotemporal dynamics in two-dimensional Kolmogorov flow over large domains. J. Fluid Mech. 750, 518554.Google Scholar
Lucas, D. & Kerswell, R. R. 2015 Recurrent flow analysis in spatiotemporally chaotic 2-dimensional Kolmogorov flow. Phys. Fluids 27 (4), 045106.Google Scholar
Marteau, D., Cardoso, O. & Tabeling, P. 1995 Equilibrium states of two-dimensional turbulence: an experimental study. Phys. Rev. E 51, 51245127.Google Scholar
Meshalkin, L. D. & Sinai, I. G. 1961 Investigation of the stability of a stationary solution of a system of equations for the plane movement of an incompressible viscous liquid. Z. Angew. Math. Mech. J. Appl. Math. Mech. 25 (6), 17001705.Google Scholar
Mitchell, R.2013 Transition to turbulence and mixing in a quasi-two-dimensional Lorentz force-driven Kolmogorov flow. PhD thesis, Georgia Institute of Technology.Google Scholar
Nagata, M. 1997 Three-dimensional traveling-wave solutions in plane Couette flow. Phys. Rev. E 55, 20232025.Google Scholar
Nepomniashchii, A. A. 1976 On stability of secondary flows of a viscous fluid in unbounded space. Z. Angew. Math. Mech. J. Appl. Math. Mech. 40 (5), 886891.Google Scholar
Obukhov, A. M. 1983 Kolmogorov flow and laboratory simulation of it. Russ. Math. Surv. 38 (4), 113.CrossRefGoogle Scholar
Paret, J. & Tabeling, P. 1997 Experimental observation of the two-dimensional inverse energy cascade. Phys. Rev. Lett. 79, 41624165.CrossRefGoogle Scholar
Rivera, M. K. & Ecke, R. E. 2005 Pair dispersion and doubling time statistics in two-dimensional turbulence. Phys. Rev. Lett. 95, 194503.Google Scholar
Smaoui, N. 2001 A model for the unstable manifold of the bursting behavior in the 2D Navier–Stokes flow. SIAM J. Sci. Comput. 23 (3), 824839.Google Scholar
Sommeria, J. 1986 Experimental study of the two-dimensional inverse energy cascade in a square box. J. Fluid Mech. 170, 139168.Google Scholar
Sommeria, J., Meyers, S. D. & Swinney, H. L. 1988 Laboratory simulation of Jupiter’s great red spot. Nature 331 (6158), 689693.Google Scholar
Sommeria, J. & Moreau, R. 1982 Why, how, and when, MHD turbulence becomes two-dimensional. J. Fluid Mech. 118, 507518.Google Scholar
Suri, B., Tithof, J., Grigoriev, R. O. & Schatz, M. F. 2017 Forecasting fluid flows using the geometry of turbulence. Phys. Rev. Lett. 118, 114501.CrossRefGoogle ScholarPubMed
Suri, B., Tithof, J., Mitchell, R., Grigoriev, R. O. & Schatz, M. F. 2014 Velocity profile in a two-layer Kolmogorov-like flow. Phys. Fluids 26 (5), 053601.Google Scholar
Tabeling, P., Burkhart, S., Cardoso, O. & Willaime, H. 1991 Experimental study of freely decaying two-dimensional turbulence. Phys. Rev. Lett. 67, 37723775.Google Scholar
Thess, A. 1992 Instabilities in two-dimensional spatially periodic flows. Part I: Kolmogorov flow. Phys. Fluids A 4 (7), 13851395.Google Scholar
Waleffe, F. 1998 Three-dimensional coherent states in plane shear flows. Phys. Rev. Lett. 81 (19), 4140.Google Scholar

Tithof et al. supplementary movie

A side-by-side animation comparing the time-periodic flows observed in the experiment and the NPS (with depth-averaged parameters). In each case, the Reynolds number was chosen above the onset of the secondary instability so that the oscillations are clearly visible.

Download Tithof et al. supplementary movie(Video)
Video 24.1 MB