Hostname: page-component-7857688df4-vhqbq Total loading time: 0 Render date: 2025-11-19T07:08:40.021Z Has data issue: false hasContentIssue false

Bi-orthogonal decomposition for slow acoustic pulse receptivity simulation of hypersonic boundary layer over a blunt cone

Published online by Cambridge University Press:  19 November 2025

Zihao Zou*
Affiliation:
University of California, Los Angeles, CA 90095, USA
Simon He
Affiliation:
University of California, Los Angeles, CA 90095, USA
Xiaolin Zhong
Affiliation:
University of California, Los Angeles, CA 90095, USA
*
Corresponding author: Zihao Zou, zzou1@ucla.edu

Abstract

The conventional $\textrm{e}^N$ laminar-to-turbulent transition-prediction method focuses on the relative growth rate, called the $N$ factor, and neglects receptivity. To improve predictions, Mack (1977) proposed the amplitude method to incorporate receptivity, nonlinear effects and broadband characteristics. Currently, the lack of accurate receptivity coefficients, estimates of initial disturbance amplitudes at the lower-branch neutral position, referred to as branch I (where the imaginary part of the spatial wavenumber is zero), hinders the application of the amplitude method. Although experimental- and numerical-receptivity analyses have been conducted previously, they rely on correlations or indirect approaches. For the purpose of direct evaluation, this study applies bi-orthogonal decomposition to direct numerical simulation (DNS) data of a hypersonic boundary layer over a blunt cone, extracting initial amplitudes of instability modes. The decomposition framework incorporates both boundary-layer and entropy-layer modes, enabling direct evaluation of receptivity coefficients at branch I. The decomposed modal amplitudes show reduced multimode interference and the receptivity coefficients have been computed to have fewer oscillations. With an overall greater magnitude, the receptivity coefficients suggest a possible earlier transition location than the previous numerical study by He & Zhong (2023 J. Spacecr. Rockets, vol. 60, no. 6, pp. 1927–1938). Additionally, a discrete entropy-layer mode is recovered, contributing to instability development alongside modes F and S. These findings support the use of bi-orthogonal decomposition as a practical tool for receptivity analysis and enhancement of the amplitude method in transition prediction.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Al Hasnine, S.M.A., Russo, V., Tumin, A. & Brehm, C. 2023 Biorthogonal decomposition of the disturbance flow field generated by particle impingement on a hypersonic boundary layer. J. Fluid Mech. 969, A1.10.1017/jfm.2023.531CrossRefGoogle Scholar
Balakumar, P. & Chou, A. 2018 Transition prediction in hypersonic boundary layers using receptivity and freestream spectra. AIAA J. 56 (1), 193208.10.2514/1.J056040CrossRefGoogle ScholarPubMed
Chang, C.-L., Malik, M. & Hussaini, M. 1990 Effects of shock on the stability of hypersonic boundary layers. https://arc.aiaa.org/doi/pdf/10.2514/6.1990-1448.CrossRefGoogle Scholar
Chen, Y., Tu, G., Wan, B., Su, C., Yuan, X. & Chen, J. 2021 Receptivity of a hypersonic flow over a blunt wedge to a slow acoustic wave. Phys. Fluids 33 (8), 084114.10.1063/5.0062557CrossRefGoogle Scholar
Chu, B.T. 1965 On the energy transfer to small disturbances in fluid flow (Part I). Acta Mechanica. 1, 215234.10.1007/BF01387235CrossRefGoogle Scholar
Cook, D. & Nichols, J. 2022 Free-stream receptivity of a hypersonic blunt cone using input–output analysis and a shock-kinematic boundary condition. Theor. Comput. Fluid Dyn. 36.10.1007/s00162-021-00597-5CrossRefGoogle Scholar
Cook, D.A. & Nichols, J.W. 2024 Three-dimensional receptivity of hypersonic sharp and blunt cones to free-stream planar waves using hierarchical input–output analysis. Phys. Rev. Fluids. 9, 063901.10.1103/PhysRevFluids.9.063901CrossRefGoogle Scholar
Cook, D.A., Thome, J., Brock, J.M., Nichols, J.W. & Candler, G.V. 2018 Understanding effects of nose-cone bluntness on hypersonic boundary layer transition using input–output analysis. AIAA, arXiv: https://arc.aiaa.org/doi/pdf/10.2514/6.2018-0378.Google Scholar
Dietz, G. & Hein, S. 1999 Entropy-layer instabilities over a blunted flat plate in supersonic flow. Phys. Fluids. 11 (1), 79.10.1063/1.869899CrossRefGoogle Scholar
Dwivedi, A., Sidharth, G.S. & Jovanović, M.R. 2021 Oblique transition in hypersonic double-wedge flow.10.1017/jfm.2022.697CrossRefGoogle Scholar
Fedorov, A. 2003 Receptivity of a high-speed boundary layer to acoustic disturbances. J. Fluid Mech. 491, 101129.10.1017/S0022112003005263CrossRefGoogle Scholar
Fedorov, A. & Khokhlov, A. 2001 Prehistory of instability in a hypersonic boundary layer. Theor. Comput. Fluid Dyn. 14, 359375.10.1007/s001620100038CrossRefGoogle Scholar
Fedorov, A. & Khokhlov, A.P. 1991 Excitation of unstable modes in a supersonic boundary layer by acoustic waves. Fluid Dyn. 26, 531537.10.1007/BF01050314CrossRefGoogle Scholar
Fedorov, A. & Tumin, A. 2011 High-speed boundary-layer instability: old terminology and a new framework. AIAA J. 49 (8), 16471657.10.2514/1.J050835CrossRefGoogle Scholar
Goldstein, M.E. & Hultgren, L.S. 1989 Boundary-layer receptivity to long-wave free-stream disturbances. Annu. Rev. Fluid Mech. 21 (1), 137166.10.1146/annurev.fl.21.010189.001033CrossRefGoogle Scholar
Al Hasnine, S.M.A., Russo, V., Browne, O.M., Tumin, A. & Brehm, C. 2020 Disturbance flow field analysis of particulate interaction with high speed boundary layers. AIAA arXiv: https://arc.aiaa.org/doi/pdf/10.2514/6.2020-3046.Google Scholar
He, S. 2022 Receptivity of straight blunt cones to broadband freestream pulse disturbances for transition prediction in hypersonic flow. PhD thesis, copyright - Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works; Last updated - 2023-03-08.Google Scholar
He, S. & Zhong, X. 2021 a Hypersonic boundary-layer receptivity over a blunt cone to freestream pulse disturbances. AIAA J. 59 (9), 35463565.10.2514/1.J059697CrossRefGoogle Scholar
He, S. & Zhong, X. 2021 b Numerical study of the receptivity of a blunt cone to freestream pulse disturbances in hypersonic flow. AIAA arXiv: https://arc.aiaa.org/doi/pdf/10.2514/6.2021-2887.CrossRefGoogle Scholar
He, S. & Zhong, X. 2022 The effects of nose bluntness on broadband disturbance receptivity in hypersonic flow. Phys. Fluids. 34 (5), 054104.10.1063/5.0088236CrossRefGoogle Scholar
He, S. & Zhong, X. 2023 Application of broadband receptivity data to the amplitude method for transition prediction. J. Spacecr. Rockets. 60 (6), 19271938.10.2514/1.A35742CrossRefGoogle Scholar
Huang, Y. & Zhong, X. 2014 Numerical study of hypersonic boundary-layer receptivity with freestream hotspot perturbations. AIAA J. 52 (12), 26522672.10.2514/1.J052657CrossRefGoogle Scholar
Jovanović, M.R. & Bamieh, B. 2005 Componentwise energy amplification in channel flows. J. Fluid Mech. 534, 145183.10.1017/S0022112005004295CrossRefGoogle Scholar
Knisely, C.P. & Zhong, X. 2019 a Sound radiation by supersonic unstable modes in hypersonic blunt cone boundary layers. I. Linear stability theory. Phys. Fluids. 31 (2), 024103.10.1063/1.5055761CrossRefGoogle Scholar
Knisely, C.P. & Zhong, X. 2019 b Sound radiation by supersonic unstable modes in hypersonic blunt cone boundary layers. II. Direct numerical simulation. Phys. Fluids 31 (2), 024104.10.1063/1.5077007CrossRefGoogle Scholar
Kosloff, D. & Tal-Ezer, H. 1993 A modified Chebyshev pseudospectral method with an O(N-1) time step restriction. J. Comput. Phys. 104 (2), 457469.10.1006/jcph.1993.1044CrossRefGoogle Scholar
Kumar, C., Sarath, K.P., Sasidharan, U. & Gaitonde, D.V. 2025 Resolvent and DNS analysis of nose bluntness effect on hypersonic boundary layer instabilities over ogive cylinders. AIAA arXiv: https://arc.aiaa.org/doi/pdf/10.2514/6.2025-1315.CrossRefGoogle Scholar
Lei, J. & Zhong, X. 2012 Linear stability analysis of nose bluntness effects on hypersonic boundary layer transition. J. Spacecr. Rockets 49, 2437.10.2514/1.52616CrossRefGoogle Scholar
Ma, Y. & Zhong, X. 2003 Receptivity of a supersonic boundary layer over a flat plate. Part 1. Wave structures and interactions. J. Fluid Mech. 488, 3178.10.1017/S0022112003004786CrossRefGoogle Scholar
Mack, L.M. 1977 Transition and laminar instability. Tech. Rep.Google Scholar
Malik, M.R. 1990 Numerical methods for hypersonic boundary layer stability. J. Comput. Phys. 86 (2), 376413.10.1016/0021-9991(90)90106-BCrossRefGoogle Scholar
Marineau, E.C. 2017 Prediction methodology for second-mode-dominated boundary-layer transition in wind tunnels. AIAA J. 55 (2), 484499.10.2514/1.J055061CrossRefGoogle Scholar
Marineau, E.C., Moraru, G.C., Lewis, D.R., Norris, J.D., Lafferty, J.F. & Johnson, H.B. 2015 Investigation of Mach 10 boundary layer stability of sharp cones at angle-of-attack, part 1: experiments. arXiv: https://arc.aiaa.org/doi/pdf/10.2514/6.2015-1737.Google Scholar
Marineau, E.C., Moraru, G.C., Lewis, D.R., Norris, J.D., Lafferty, J.F., Wagnild, R.M. & Smith, J.A. 2014 Mach 10 boundary layer transition experiments on sharp and blunted cones (invited). arXiv: https://arc.aiaa.org/doi/pdf/10.2514/6.2014-3108.CrossRefGoogle Scholar
McKeon, B.J. & Sharma, A.S. 2010 A critical-layer framework for turbulent pipe flow. J. Fluid Mech. 658, 336382.10.1017/S002211201000176XCrossRefGoogle Scholar
Miselis, M., Huang, Y. & Zhong, X. 2016 Modal analysis of receptivity mechanisms for a freestream hot-spot perturbation on a blunt compression-cone boundary layer. AIAA arXiv: https://arc.aiaa.org/doi/pdf/10.2514/6.2016-3345.CrossRefGoogle Scholar
Morkovin, M.V. 1994 Transition in open flow systems-a reassessment. Bull. Am. Phys. Soc. 39, 1882.Google Scholar
Mortensen, C.H. & Zhong, X. 2016 Real-gas and surface-ablation effects on hypersonic boundary-layer instability over a blunt cone. AIAA J. 54 (3), 980998.10.2514/1.J054404CrossRefGoogle Scholar
Nichols, J.W. & Candler, G.V. 2019 Input–output analysis of complex hypersonic boundary layers. AIAA arXiv: https://arc.aiaa.org/doi/pdf/10.2514/6.2019-1383.CrossRefGoogle Scholar
Qin, F. & Wu, X. 2016 Response and receptivity of the hypersonic boundary layer past a wedge to free-stream acoustic, vortical and entropy disturbances. J. Fluid Mech. 797, 874915.10.1017/jfm.2016.287CrossRefGoogle Scholar
Ren, J., Marxen, O. & Pecnik, R. 2019 Boundary-layer stability of supercritical fluids in the vicinity of the Widom line. J. Fluid Mech. 871, 831864.10.1017/jfm.2019.348CrossRefGoogle Scholar
Saikia, B., Al Hasnine, S.M.A. & Brehm, C. 2022 On the role of discrete and continuous modes in a cooled high-speed boundary layer flow. J. Fluid Mech. 942, R7.10.1017/jfm.2022.380CrossRefGoogle Scholar
Salwen, H. & Grosch, C.E. 1981 The continuous spectrum of the Orr–Sommerfeld equation. Part 2. Eigenfunction expansions. J. Fluid Mech. 104, 445465.10.1017/S0022112081002991CrossRefGoogle Scholar
Shukla, R.K., Tatineni, M. & Zhong, X. 2007 Very high-order compact finite difference schemes on non-uniform grids for incompressible Navier–Stokes equations. J. Comput. Phys. 224 (2), 10641094.10.1016/j.jcp.2006.11.007CrossRefGoogle Scholar
Sivasubramanian, J. & Fasel, H.F. 2014 Numerical investigation of the development of three-dimensional wavepackets in a sharp cone boundary layer at Mach 6. J. Fluid Mech. 756, 600649.10.1017/jfm.2014.434CrossRefGoogle Scholar
Stetson, K.F. 1984 Laminar boundary layer stability experiments on a cone at Mach 8. II- Blunt cone. arXiv: https://arc.aiaa.org/doi/pdf/10.2514/6.1984-6.CrossRefGoogle Scholar
Tumin, A. 2003 Multimode decomposition of spatially growing perturbations in a two-dimensional boundary layer. Phys. Fluids 15 (9), 25252540.10.1063/1.1597453CrossRefGoogle Scholar
Tumin, A. 2007 Three-dimensional spatial normal modes in compressible boundary layers. J. Fluid Mech. 586, 295322.10.1017/S002211200700691XCrossRefGoogle Scholar
Tumin, A. 2011 The biorthogonal eigenfunction system of linear stability equations: a survey of applications to receptivity problems and to analysis of experimental and computational results. In 41st AIAA Fluid Dynamics Conference and Exhibit , pp. 3244.Google Scholar
Tumin, A. & Fedorov, A. 1983 Spatial growth of disturbances in a compressible boundary layer. J. Appl. Mech. Tech. Phys. 24 (4), 548554.10.1007/BF00907906CrossRefGoogle Scholar
Tumin, A., Wang, X. & Zhong, X. 2007 Direct numerical simulation and the theory of receptivity in a hypersonic boundary layer. Phys. Fluids. 19 (1), 014101.10.1063/1.2409731CrossRefGoogle Scholar
Wan, B., Chen, J., Tu, G., Xiang, X., Yuan, X. & Duan, M. 2023 Effects of nose bluntness on entropy-layer stabilities over cones and wedges. Acta Mechanica Sin. 39 (1), 122176.10.1007/s10409-022-22176-xCrossRefGoogle Scholar
Wan, B., Su, C. & Chen, J. 2020 Receptivity of a hypersonic blunt cone: role of disturbances in entropy layer. AIAA J. 58 (9), 40474054.10.2514/1.J058816CrossRefGoogle Scholar
Zhong, X. 1998 High-order finite-difference schemes for numerical simulation of hypersonic boundary-layer transition. J. Comput. Phys. 144 (2), 662709.10.1006/jcph.1998.6010CrossRefGoogle Scholar
Zhong, X. & Tatineni, M. 2003 High-order non-uniform grid schemes for numerical simulation of hypersonic boundary-layer stability and transition. J. Comput. Phys. 190 (2), 419458.10.1016/S0021-9991(03)00282-1CrossRefGoogle Scholar
Zhong, X. & Wang, X. 2012 Direct numerical simulation on the receptivity, instability, and transition of hypersonic boundary layers. Annu. Rev. Fluid Mech. 44 (1), 527561.10.1146/annurev-fluid-120710-101208CrossRefGoogle Scholar
Zou, Z. & Zhong, X. 2023 A high-order finite-difference method for linear stability analysis and bi-orthogonal decomposition of hypersonic boundary layer flow. arXiv: https://arc.aiaa.org/doi/pdf/10.2514/6.2023-1043 CrossRefGoogle Scholar
Zou, Z. & Zhong, X. 2024 A new very high-order finite-difference method for linear stability analysis and bi-orthogonal decomposition of hypersonic boundary layer flow. J. Comput. Phys. 512, 113135.10.1016/j.jcp.2024.113135CrossRefGoogle Scholar