Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-10-31T23:40:06.937Z Has data issue: false hasContentIssue false

Bottom pressure distribution due to wave scattering near a submerged obstacle

Published online by Cambridge University Press:  07 June 2012

Julien Touboul*
Affiliation:
Mediterranean Institute of Oceanography (MIO), Aix-Marseille Univ, Université du Sud Toulon-Var, CNRS/INSU, MIO UMR 7294, IRD, MIO UMR235, 83957, La Garde CEDEX, France
Vincent Rey
Affiliation:
Mediterranean Institute of Oceanography (MIO), Aix-Marseille Univ, Université du Sud Toulon-Var, CNRS/INSU, MIO UMR 7294, IRD, MIO UMR235, 83957, La Garde CEDEX, France
*
Email address for correspondence: julien.touboul@univ-tln.fr

Abstract

The dynamic pressure distribution on the bottom of a wave flume, due to the interaction of water waves with a submerged structure, is investigated experimentally and analytically, for both first- and second-order gravity waves of finite amplitude. The dynamic pressure excess is found to be very important, even for incoming waves propagating in deep water conditions. In this depth condition, a high pressure zone, thirty times larger than the dynamic pressure excess expected in the absence of the obstacle, is found in its vicinity. On the other hand, a low pressure zone is observed in the vicinity of the submerged obstacle for incoming waves propagating in smaller depth conditions. In any case, pressure gradients remain important. The second-order disturbance is found to be larger than first order in deep water conditions, for some specific conditions and locations. This result is interpreted in terms of nonlinear coupling of first-order components, including local modes.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ardhuin, F., Stutzmann, E., Schimmel, M. & Mangeney, A. 2011 Ocean wave sources of seismic noise. J Geophys. Res. 116, C09004.Google Scholar
2. Athanassoulis, G. A. & Belibassakis, K. A. 1999 A consistent coupled-mode theory for the propagation of small-amplitude water waves over variable bathymetry regions. J. Fluid Mech. 389, 275301.CrossRefGoogle Scholar
3. Belibassakis, K. A. & Athanassoulis, G. A. 2006 A coupled-mode technique for weakly nonlinear wave interaction with large floating structures lying over variable bathymetry regions. Appl. Ocean Res. 28 (1), 5976.CrossRefGoogle Scholar
4. Bishop, C. T. & Donelan, M. A. 1987 Measuring waves with pressure transducers. Coast. Engng 11, 309328.Google Scholar
5. Cavaleri, L. 1980 Wave measurements using pressure transducer. Oceanol. Acta 3 (3), 339346.Google Scholar
6. Escher, J. & Schlurmann, T. 2008 On the recovery of the free surface from the pressure within periodic travelling water waves. J. Nonlinear Math. Phys. 15 (2), 5057.CrossRefGoogle Scholar
7. Farrell, W. E. & Munk, W. 2008 What do deep sea pressure fluctuations tell about short surface waves? Geophys. Res. Lett. 35, L19605.CrossRefGoogle Scholar
8. Farrell, W. E. & Munk, W. 2010 Booms and busts in the deep. J. Phys. Oceanogr. 40, 21592169.CrossRefGoogle Scholar
9. Goda, Y. & Suzuki, Y. 1976 Estimation of incident and reflected waves in random wave experiments. In Proceedings of the 15th Coastal Engineering Conference, pp. 828845. Coastal Engineering Research Council.Google Scholar
10. Grace, R. A. 1978 Surface wave heights from pressure records. Coast. Engng 2, 5567.Google Scholar
11. Grue, J. & Palm, E. 1984 Reflection of surface waves by submerged cylinders. Appl. Ocean Res. 6 (1), 5460.CrossRefGoogle Scholar
12. Guazzelli, E., Rey, V. & Belzons, M. 1992 Higher order Bragg reflection of surface gravity waves by periodic beds. J. Fluid Mech. 245, 301317.CrossRefGoogle Scholar
13. Guevel, P., Landel, E., Bouchet, R. & Manzone, J. M. 1986 Techniques nouvelles de brise houle et de protection des sites côtiers. Part I. Le phénomène d’un mur d’eau oscillant et son application pour protéger un site côtier soumis à l’action de la houle. Bull. Permanent International Association of Navigation Congresses 52, 48–59..Google Scholar
14. Hasselmann, K. 1963 A statistical analysis of the generation of microseisms. Rev. Geophys. 1, 177210.CrossRefGoogle Scholar
15. Kedar, S., Longuet-Higgins, M. S., Graham, F. W. N., Clayton, R. & Jones, C. 2008 The origin of deep ocean microseisms in the North Atlantic Ocean. Proc. R. Soc. Lond. Ser. A 464, 135.Google Scholar
16. Kirby, J. T. & Dalrymple, R. D. 1983 Propagation of obliquely incident water waves over a trench. J. Fluid Mech. 133, 419443.Google Scholar
17. Lan, Y. J., Hsu, T. W., Lai, J. W., Chang, C. C. & Ting, C. H. 2011 Bragg scattering of waves propagating over a series of poro-elastic submerged breakwaters. Wave Mot. 48, 112.Google Scholar
18. Lee, J. F. & Lan, Y. J. 2002 On waves propagating over poro-elastic seabed. Ocean Engng 29 (8), 931946.CrossRefGoogle Scholar
19. Longuet-Higgins, M. S. 1950 A theory of the origin of microseisms. Proc. R. Soc. Lond. Ser A 243, 135.Google Scholar
20. Magne, R., Belibassakis, K. A., Herbers, T. H. C., Ardhuin, F., O’Reilly, W. C. & Rey, V. 2007 Evolution of surface gravity waves over a submarine canyon. J. Geophys. Res. 112, C01002.Google Scholar
21. Mansard, E. P. D. & Funke, E. R. 1980 The measurement of incident and reflected spectra using a least square method. In Proceedings of the 15th Coastal Engineering Conference, pp. 154–172.Google Scholar
22. Miche, M. 1944 Mouvements ondulatoires de la mer en profondeur croissante ou décroissante. Ann. Ponts Chauss. 2, 131164.Google Scholar
23. Molin, B., Lajoie, D., Jarry, N. & Rousseaux, G. 2008 Tapping wave energy through Longuet-Higgins microseism effect. In Proceedings of the 23rd International Workshop on Water Waves and Floating Bodies, pp. 132–135.Google Scholar
24. Newman, J. N. 1990 Second-harmonic wave diffraction at large depths. J. Fluid Mech. 213, 5970.Google Scholar
25. Nielsen, P. 1989 Analysis of natural waves by local approximation. J. Waterway Port Coast. Engng 115 (3), 384397.CrossRefGoogle Scholar
26. Rey, V. 1992 Propagation and local behaviour of normally incident gravity waves over varying topography. Eur. J. Mech. B 11 (2), 213232.Google Scholar
27. Rey, V. 1995 A note on the scattering of obliquely incident gravity waves by cylindrical obstacles in waters of finite depth. Eur. J. Mech. B 14 (1), 207216.Google Scholar
28. Rey, V., Capiobianco, R. & Dulou, C. 2002 Wave scattering by a submerged plate in presence of a steady uniform current. Coast. Engng 47, 2734.Google Scholar
29. Rey, V. & Touboul, J. 2011 Forces and moment on a horizontal plate due to regular and irregular waves in the presence of current. Appl. Ocean Res. 33 (2), 8899.Google Scholar
30. Silvester, R. & Hsu, J. R. C. 1989 Sines revisited. J. Waterway Port Coast. Engng 115, 327343.CrossRefGoogle Scholar
31. Sumer, B. M., Whitehouse, R. J. S. & Torum, A. 2001 Scour around coastal structures: a summary of recent research. Coast. Engng 44, 153190.CrossRefGoogle Scholar
32. Takano, K. 1960 Effet d’un obstacle parallélépipédique sur la propagation de la houle. Houille Blanche 15, 247267.Google Scholar
33. Tsai, C. P. 1995 Wave induced liquefaction potential in front of a breakwater. Ocean Engng 22 (1), 118.CrossRefGoogle Scholar
34. Tsai, C. P., Huang, M. C., Young, F. J., Lin, Y. C. & Li, H. W. 2005 On the recovery of surface wave by pressure transfer function. Ocean Engng 32, 12471259.Google Scholar
35. Wang, H., Lee, D. Y. & Garcia, A. 1986 Time series surface-wave records from pressure gauge. Coast. Engng 10, 379393.Google Scholar
36. Wiechert, E. 1904 Discussion, Verhandlung der zweiten Internationalen Seismologischen Konferenz. Beiträge Geophys. 2, 4143.Google Scholar
37. Yamamoto, T., Koning, H. L., Sellmeijer, H. & Hijum, E. Van 1978 On the response of a poro-elastic bed to water waves. J. Fluid Mech. 87, 193206.CrossRefGoogle Scholar