Skip to main content
×
×
Home

Bottom-pressure observations of deep-sea internal hydrostatic and non-hydrostatic motions

  • Hans van Haren (a1)
Abstract

In the ocean, sloping bottom topography is important for the generation and dissipation of internal waves. Here, the transition of such waves to turbulence is demonstrated using an accurate bottom-pressure sensor that was moored with an acoustic Doppler current profiler and high-resolution thermistor string on the sloping side of the ocean guyot ‘Great Meteor Seamount’ (water depth 549 m). The site is dominated by the passage of strong frontal bores, moving upslope once or twice every tidal period, with a trail of high-frequency internal waves. The bore amplitude and precise timing of bore passage vary every tide. A bore induces mainly non-hydrostatic pressure, while the trailing waves induce mainly internal hydrostatic pressure. These separate (internal wave) pressure terms are independently estimated using current and temperature data, respectively. In the bottom-pressure time series, the passage of a bore is barely visible, but the trailing high-frequency internal waves are. A bore is obscured by higher-frequency pressure variations up to ${\sim} 4{\times} 1{0}^{3} ~\mathrm{cpd} \approx 80N$ (cpd, cycles per day; $N$ , the large-scale buoyancy frequency). These motions dominate the turbulent state of internal tides above a sloping bottom. In contrast with previous bottom-pressure observations in other areas, infra-gravity surface waves contribute little to these pressure variations in the same frequency range. Here, such waves do not incur observed pressure. This is verified in a consistency test for large-Reynolds-number turbulence using high-resolution temperature data. The high-frequency quasi-turbulent internal motions are visible in detailed temperature and acoustic echo images, revealing a nearly permanently wave-turbulent tide going up and down the bottom slope. Over the entire observational period, the spectral slope and variance of bottom pressure are equivalent to internal hydrostatic pressure due to internal waves in the lower 100 m above the bottom, by non-hydrostatic pressure due to high-frequency internal waves and large-scale overturning. The observations suggest a transition between large-scale internal waves, small-scale internal tidal waves residing on thin ( ${{\sim} }1~\mathrm{m} $ ) stratified layers and turbulence.

Copyright
Corresponding author
Email address for correspondence: hans.van.haren@nioz.nl
References
Hide All
Aghsaee, P., Boegman, L. & Lamb, K. G. 2010 Breaking of shoaling internal solitary waves. J. Fluid Mech. 659, 289317.
Bonnin, J., van Haren, H., Hosegood, P. & Brummer, G.-J. A. 2006 Burst resuspension of seabed material at the foot of the continental slope in the Rockall Channel. Mar. Geol. 226, 167184.
Bromirski, P. D., Sergienko, O. V. & MacAyeal, D. R. 2010 Transoceanic infragravity waves impacting Antarctic ice shelves. Geophys. Res. Lett. 37, L02502.
Cuxart, J., Morales, G., Terradales, E. & Yagüe, C. 2002 Study of coherent structures and estimation of the pressure transport terms for the nocturnal stable boundary layer. Boundary-Layer Meteorol. 105, 305328.
D’Asaro, E. A. & Lien, R.-C. 2000a Lagrangian measurements of waves and turbulence in stratified flows. J. Phys. Oceanogr. 30, 641655.
D’Asaro, E. A. & Lien, R.-C. 2000b The wave–turbulence transition for stratified flows. J. Phys. Oceanogr. 30, 16691678.
Filloux, J. H. 1980 Pressure fluctuations on the open-ocean floor over a broad frequency range: new program and early results. J. Phys. Oceanogr. 10, 19591971.
Fructus, D., Carr, M., Grue, J., Jensen, A. & Davies, P. A. 2009 Shear-induced breaking of large internal solitary waves. J. Fluid Mech. 620, 129.
Gayen, B. & Sarkar, S. 2010 Turbulence during the generation of internal tide on a critical slope. Phys. Rev. Lett. 104, 218502.
Gerkema, T., Zimmerman, J. T. F., Maas, L. R. M. & van Haren, H. 2008 Geophysical and astrophysical fluid dynamics beyond the traditional approximation. Rev. Geophys. 46, RG2004.
Gotoh, T. & Fukayama, D. 2001 Pressure spectrum in homogeneous turbulence. Phys. Rev. Lett. 86, 37753778.
Grue, J. 2005 Generation, ppropagation and breaking of internal solitary waves. Chaos 15, 037110.
Grue, J., Jensen, A., Rusås, P.-O. & Sveen, J. K. 2000 Breaking and broadening of internal solitary waves. J. Fluid Mech. 413, 181217.
Grue, J. & Sveen, J. K. 2010 A scaling law of internal run-up duration. Ocean Dyn. 60, 9931006.
Hosegood, P. & van Haren, H. 2004 Near-bed solibores over the continental slope in the Faeroe–Shetland Channel. Deep-Sea Res. II 51, 29432971.
Klymak, J. M. & Moum, J. N. 2003 Internal solitary waves of elevation advancing on a shoaling shelf. Geophys. Res. Lett. 30, 2045.
Lamb, K. G. 2003 Shoaling solitary internal waves: on a criterion for the formation of waves with trapped cores. J. Fluid Mech. 478, 81100.
Lamb, K. G. & Farmer, D. 2011 Instabilities in an internal solitary-like wave on the Oregon shelf. J. Phys. Oceanogr. 41, 6787.
LeBlond, P. H. & Mysak, L. A. 1978 Waves in the Ocean. Elsevier.
Moum, J. N. & Smyth, W. D. 2006 The pressure disturbance of a nonlinear internal wave train. J. Fluid Mech. 558, 153177.
Moum, J. N. & Nash, J. D. 2008 Seafloor pressure measurements of nonlinear internal waves. J. Phys. Oceanogr. 38, 481491.
Okihiro, M. & Guza, R. T. 1995 Infragravity energy modulation by tides. J. Geophys. Res. 100, 16 143–16 148.
Perlin, A., Moum, J. N., Klymak, J. M., Levine, M. D., Boyd, T. & Kosro, M. H. 2005 A modified law-of-the-wall applied to oceanic boundary layers. J. Geophys. Res. 110, C10S10.
Pinkel, R. 1981 Observations of the near-surface internal wavefield. J. Phys. Oceanogr. 11, 12481257.
Shaw, R. H., Paw, K. T., Zhang, X. J., Gao, W., den Hartog, G. & Neumann, H. H. 1990 Retrieval of turbulent pressure fluctuations at the ground surface beneath a forest. Boundary-Layer Meteorol. 50, 319338.
Slinn, D. N. & Riley, J. J. 1996 Turbulent mixing in the oceanic boundary layer caused by internal wave reflection from sloping terrain. Dyn. Atmos. Oceans 24, 5162.
Smith, W. H. F. & Sandwell, D. T. 1997 Global seafloor topography from satellite altimetry and ship depth soundings. Science 277, 19571962.
Thomas, A. S. W. & Bull, M. K. 1983 On the role of wall-pressure fluctuations in deterministic motions in the turbulent boundary layer. J. Fluid Mech. 128, 283322.
Thorpe, S. A. 1977 Turbulence and mixing in a Scottish loch. Phil. Trans. R. Soc. Lond. A 286, 125181.
Tsuji, Y., Fransson, J. H. M., Alfredsson, P. H. & Johansson, A. V. 2007 Pressure statistics and their scaling in high-Reynolds-number turbulent boundary layers. J. Fluid Mech. 585, 140.
Tsuji, Y. & Ishihara, T. 2003 Similarity scaling of pressure fluctuation in turbulence. Phys. Rev. E 68, 026309.
van Haren, H. 2009 High-frequency vertical current observations in stratified seas and ocean. Cont. Shelf Res. 29, 12511263.
van Haren, H. 2011 Internal wave-turbulence pressure above sloping sea bottoms. J. Geophys. Res 116, C12004.
van Haren, H. & Gostiaux, L. 2009 High-resolution open-ocean temperature spectra. J. Geophys. Res. 114, C05005.
van Haren, H. & Gostiaux, L. 2010 A deep-ocean Kelvin–Helmholtz billow train. Geophys. Res. Lett. 37, L03605.
van Haren, H. & Gostiaux, L. 2012a Detailed internal wave mixing above a deep-ocean slope. J. Mar. Res. 70, 179197.
van Haren, H. & Gostiaux, L. 2012b Energy release through internal wave breaking. Oceanography 25 (2), 124131.
van Haren, H., Laan, M., Buijsman, D.-J., Gostiaux, L., Smit, M. G. & Keijzer, E. 2009 NIOZ3: independent temperature sensors sampling yearlong data at a rate of 1 Hz. IEEE J. Ocean. Engng 34, 315322.
Venayagamoorthy, S. K. & Fringer, O. B. 2007 On the formation and propagation of nonlinear internal boluses across a shelf break. J. Fluid Mech. 577, 137159.
Vlasenko, V. & Hutter, K. 2002 Numerical experiments on the breaking of solitary internal waves over a slope-shelf topography. J. Phys. Oceanogr. 32, 17791793.
Webb, S. C. 1998 Broadband seismology and noise under the ocean. Rev. Geophys. 36, 105142.
Willmarth, W. W. 1975 Pressure fluctuations beneath turbulent boundary layers. Annu. Rev. Fluid Mech. 7, 1336.
Wyngaard, J. C. 1973 On surface layer turbulence. In Workshop on Micrometeorology (ed. Haugen, D. A.). pp. 101149. AMS.
Xing, J. & Davies, A. M. 2006 Processes influencing tidal mixing in the region of sills. Geophys. Res. Lett 33, L04603.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed