Skip to main content
    • Aa
    • Aa

Boundary layers and wind in cylindrical Rayleigh–Bénard cells

  • Sebastian Wagner (a1), Olga Shishkina (a1) and Claus Wagner (a1)

We analyse the wind and boundary layer properties of turbulent Rayleigh–Bénard convection in a cylindrical container with aspect ratio one for Prandtl number and Rayleigh numbers () up to by means of highly resolved direct numerical simulations. We identify time periods in which the orientation of the large-scale circulation (LSC) is nearly constant in order to perform a statistical analysis of the LSC. The analysis is then reduced to two dimensions by considering only the plane of the LSC. Within this plane the LSC is treated as a wind with thermal and viscous boundary layers developing close to the horizontal plates. Special focus is on the spatial development of the wind magnitude and the boundary layer thicknesses along the bottom plate. A method for the local analysis of the instantaneous boundary layer thicknesses is introduced which shows a dramatically changing wind magnitude along the wind path. Furthermore a linear increase of the viscous and thermal boundary layer thickness along the wind direction is observed for all considered while their ratio is spatially constant but depends weakly on . A possible explanation is a strong spatial variation of the wind magnitude and fluctuations in the boundary layer region.

Corresponding author
Email address for correspondence:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

7. X. Chavanne , F. Chillà , B. Chabaud , B. Castaing & B. Hébral 2001 Turbulent Rayleigh–Bénard convection in gaseous and liquid He. Phys. Fluids 13, 13001320.

9. D. Funfschilling & G. Ahlers 2004 Plume motion and large-scale dynamics in a cylindrical Rayleigh–Bénard cell. Phys. Rev. Lett. 92, 194502.

12. S. Grossmann & D. Lohse 2001 Thermal convection for large Prandtl number. Phys. Rev. Lett. 86, 33163319.

13. S. Grossmann & D. Lohse 2011 Multiple scaling in the ultimate regime of thermal convection. Phys. Fluids 23, 045108.

14. T. Hartlep , A. Tilgner & F. H. Busse 2003 Large scale structures in Rayleigh–Bénard convection at high Rayleigh numbers. Phys. Rev. Lett. 91, 064501.

15. M. Hölling & H. Herwig 2006 Asymptotic analysis of heat transfer in turbulent Rayleigh–Bénard convection. Intl J. Heat Mass Transfer 49, 11291136.

17. M. Kaczorowski , O. Shishkina , A. Shishkin , C. Wagner & K.-Q. Xia 2011 Analysis of the large-scale circulation and the boundary layers in turbulent Rayleigh–Bénard convection. In Direct and Large-Eddy Simulation VIII (ed. H. Kuerten , B. Geurts , V. Armenio & J. Fröhlich ), pp. 383388. Springer.

18. R. Kraichnan 1962 Turbulent thermal convection at arbitrary Prandtl number. Phys. Fluids 5, 13741389.

19. R. P. J. Kunnen , H. J. H. Clercx , B. J. Geurts , L. J. A. V. Bokhoven , R. A. D. Akkermans & R. Verzicco 2008 Numerical and experimental investigation of structure-function scaling in turbulent Rayleigh–Bénard convection. Phys. Rev. E 77, 016302.

21. D. Lohse & K.-Q. Xia 2010 Small-scale properties of turbulent Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 42, 335364.

24. R. du Puits , C. Resagk & A. Thess 2009 Structure of viscous boundary layers in turbulent Rayleigh–Bénard convection. Phys. Rev. E 80, 036318.

25. C. Resagk , R. du Puits , A. Thess , F. V. Dalzhansky , S. Grossmann , F. F. Araujo & D. Lohse 2006 Oszillations of the large-scale wind in turbulent thermal convection. Phys. Fluids 18, 095105.

26. P.-E. Roche , B. Castaing , B. Chabaud & B. Hébral 2003 Heat transfer in turbulent Rayleigh–Bénard convection below the ultimate regime. J. Low Temp. Phys. 134, 10111042.

28. J. Schmalzl , M. Breuer & U. Hansen 2004 On the validity of two-dimensional numerical approaches to time-dependend thermal convection. Europhys. Lett. 67, 390396.

29. L. Schmitt , K. Richter & R. Friedrich 1986 Large-eddy simulation of turbulent boundary layer and channel flow at high Reynolds number. In Direct and Large Eddy Simulation of Turbulence (ed. U. Schumann & R. Friedrich ). pp. 161176. Vieweg.

31. O. Shishkina , R. J. A. M. Stevens , S. Grossmann & D. Lohse 2010 Boundary layer structure in turbulent thermal convection and its consequences for the required numerical resolution. New J. Phys. 12, 075022.

33. O. Shishkina & C. Wagner 2005 A fourth-order accurate finite volume scheme for numerical simulations of turbulent Rayleigh–Bénard convection in cylindrical containers. C. R. Mecanique 333, 1728.

34. O. Shishkina & C. Wagner 2007 Local heat fluxes in turbulent Rayleigh–Bénard convection. Phys. Fluids 19, 085107.

35. B. Shraiman & E. Siggia 1990 Heat transport in high-Rayleigh-number convection. Phys. Rev. A 42, 36503653.

36. R. J. A. M. Stevens , H. J. H. Clercx & D. Lohse 2011a Effect of plumes on measuring the large-scale circulation in turbulent Rayleigh–Bénard convection. Phys. Fluids 23, 095110.

39. K. Sugiyama , R. Ni , R. J. A. M. Stevens , T. S. Chan , S.-Q. Zhou , H.-D. Xi , C. Sun , S. Grossmann , K.-Q. Xia & D. Lohse 2010 Flow reversals in thermally driven turbulence. Phys. Rev. Lett. 105, 034503.

41. C. Sun , K.-Q. Xia & P. Tong 2005 Three-dimensional flow structures and dynamics of turbulent thermal convection in a cylindrical cell. Phys. Rev. E 72, 026302.

42. A. Tilgner , A. Belmonte & A. Libchaber 1993 Temperature and velocity profiles of turbulent convection in water. Phys. Rev. E 47, 22532257.

43. H.-D. Xi , Q. Zhou & K.-Q. Xia 2006 Azimuthal motion of the mean wind in turbulent thermal convection. Phys. Rev. E 73, 056312.

44. H.-D. Xi , S.-Q. Zhou , Q. Zhou , T. S. Chan & K.-Q. Xia 2009 Origin of the temperature oscillations in turbulent thermal convection. Phys. Rev. Lett. 102, 044503.

45. K.-Q. Xia , C. Sun & S. Zhou 2003 Particle image velocimetry measurement of the velocity field in turbulent thermal convection. Phys. Rev. E 68, 066303.

47. Q. Zhou , K. Sugiyama , R. J. A. M. Stevens , S. Grossmann , D. Lohse & K.-Q. Xia 2011 Horizontal structures of velocity and temperature boundary-layers in two-dimensional numerical turbulent Rayleigh–Bénard convection. Phys. Fluids 23, 125104.

49. Q. Zhou & K.-Q. Xia 2010 Measured instantaneous viscous boundary layer in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 104, 104301.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 21 *
Loading metrics...

Abstract views

Total abstract views: 64 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd May 2017. This data will be updated every 24 hours.