Skip to main content
    • Aa
    • Aa

Bounds for heat transport in a porous layer

  • V. P. Gupta (a1) (a2) and D. D. Joseph (a1)

Strongly nonlinear heat transport across a porous layer is studied using Howard's (1963) variational method. The analysis explores a bifurcation property of Busse's (1969) multi-a solution of this variational problem and complements the 1972 study of Busse & Joseph by further restricting the fields which are allowed to compete for the maximum heat transported a t a given temperature difference. The restriction arises, as in the case of infinite Prandtl number convection studied by Chan (1971), from letting a parameter tend to infinity from the outset; here, however, the parameter which is assumed infinitely large (the Prandtl-Darcy number) is actually seldom smaller than O(107).

The theoretical bounding heat-transport curve is computed numerically. The maximizing Nusselt number (Nu) curve is given a t first by a functional of the single-a solution; then this solution bifurcates and the Nusselt number functional is maximized for an interval of Rayleigh numbers (R) by the two-a solution. The agreement between the numerical analysis and recent experiments is striking. The theoretical heat-transport curve is found to be continuously differentiable but has piecewise discontinuous second derivatives.

The results of an asymptotic (R → ∞) analysis following Chan (1971) are in qualitative agreement with the results of numerical analysis and give the asymptotic law Nu = 0.016R. This law is consistent with the result of the porous version of the well-known dimensional argument leading to the one-third power law for regular convection. The asymptotic results, however, do not appear to be in good quantitabive agreement with the numerical results.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 13 *
Loading metrics...

Abstract views

Total abstract views: 39 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 18th October 2017. This data will be updated every 24 hours.