Skip to main content Accessibility help

The breakdown of steady convection

  • T. B. Lennie (a1), D. P. Mckenzie (a2), D. R. Moore (a3) and N. O. Weiss (a4)


Two-dimensional convection in a Boussinesq fluid with infinite Prandtl number, confined between rigid horizontal boundaries and stress-free lateral boundaries, has been investigated in a series of numerical experiments. In a layer heated from below steady convection becomes unstable to oscillatory modes caused by the formation of hot or cold blobs in thermal boundary layers. Convection driven by internal heating shows a transition from steady motion through periodic oscillations to a chaotic regime, owing to the formation of cold blobs which plunge downwards and eventually split the roll. The interesting feature of this idealized problem is the interaction between constraints imposed by nonlinear dynamics and the obvious spatial structures associated with the sinking sheets and changes in the preferred cell size. These spatial structures modify the bifurcation patterns that are familiar from transitions to chaos in low-order systems. On the other hand, even large-amplitude disturbances are constrained to show periodic or quasi-periodic behaviour, and the bifurcation sequences can be followed in considerable detail. There are examples of quasi-periodic behaviour followed by intermittency, of period-doubling cascades and of transitions from quasi-periodicity to chaos, associated with a preference for narrower rolls as the Rayleigh number is increased.



Hide All
Arnéodo, A., Coullet, P. H. & Spiegel, E. A. 1985 The dynamics of triple convection. Geophys. Astrophys. Fluid Dyn. 31, 148.
Arnol'd, V. I. 1983 Geometrical Methods in the Theory of Ordinary Differential Equations. Springer. (Russian version, Moscow 1978.)
Benjamin, T. B. & Mullin, T. 1981 Anomalous modes in the Taylor experiment. Proc. R. Soc. Lond. A 377, 221249.
Benjamin, T. B. & Mullin, T. 1982 Notes on the multiplicity of flows in the Taylor experiment. J. Fluid Mech. 121, 219230.
Bergé, P. & Dubois, M. 1979 Study of unsteady convection through simultaneous velocity and interferometric measurements. J. Phys. Lett. 40, L505509.
Bergé, P., Pomeau, Y. & Vidal, C. 1984 L'Ordre dans le Chaos. Hermann.
Bolton, E. W., Busse, F. H. & Clever, R. M. 1986 Oscillatory instabilities of convection rolls at intermediate Prandtl number. J. Fluid Mech. 164, 469485.
Busse, F. H. 1967 On the stability of two-dimensional convection in a layer heated from below. J. Math. Phys. 46, 140150.
Busse, F. H. 1978 Nonlinear properties of thermal convection. Rep. Prog. Phys. 41, 19291967.
Busse, F. H. 1981 Transition to turbulence in Rayleigh—Bénard convection. In Hydrodynamics and the Transition to Turbulence (ed. H. L. Swinney & J. P. Gollub), pp. 97137. Springer.
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Oxford University Press.
Clever, R. M. & Busse, F. H. 1974 Transition to time-dependent convection. J. Fluid Mech. 65, 625645.
Cliffe, K. A. & Mullin, T. 1985 A numerical and experimental study of anomalous modes in the Taylor experiment. J. Fluid Mech. 153, 243258.
Curry, J. H. 1978 A generalized Lorenz system. Commun. Math. Phys. 60, 193204.
Curry, J. H., Herring, J. R., Loncaric, J. & Orszag, S. A. 1984 Order and disorder in two- and three-dimensional Bénard convection. J. Fluid Mech. 147, 138.
Di Prima, R. C. & Swinney, H. L. 1981 Instabilities and transition in flow between concentric rotating cylinders. In Hydrodynamic Instabilities and the Transition to Turbulence (ed. H. L. Swinney & J. P. Gollub), pp. 139180. Springer.
Dubois, M. & Bergé, P. 1980 Experimental evidence for the oscillators in a convective biperiodic regime. Phys. Lett. 76A, 5356.
Fauve, S. 1985 Large scale instabilities of cellular flows. In Chaos (ed. G. Veronis & L. M. Hudon), pp. 5569. Woods Hole Oceanogr. Inst. Tech. Rep. WHOI-85-36.
Glendinning, P. A. 1985 Homoclinic bifurcations. Ph.D. thesis, University of Cambridge.
Guckenheimer, J. 1986 Strange attractors in fluids: another view. Ann Rev. Fluid Mech. 18, 1531.
Guckenheimer, J. & Holmes, P. 1983 Nonlinear oscillations, dynamical systems and bifurcations of vector fields. Springer.
Hao, B.-L. (ed.) 1984 Chaos, pp. 107149. World Scientific.
Hide, R. 1958 An experimental study of thermal convection in a rotating liquid. Phil. Trans. R. Soc. Lond. A 250, 441478.
Hockney, R. W. 1970 The potential calculation and some applications. Methods in Comp. Phys. 9, 135211.
Howard, L. N. 1966 Convection at high Rayleigh number. In Applied Mechanics (ed. H. Görtler), pp. 11091115. Springer.
Keller, J. B. 1966 Periodic oscillations in a model of thermal convection. J. Fluid Mech. 26, 599606.
Kimura, S., Schubert, G. & Straus, J. M. 1986 Route to chaos in porous-medium thermal convection. J. Fluid Mech. 166, 305324.
Knobloch, E. & Guckenheimer, J. 1983 Convective transitions induced by a varying aspect ratio. Phys. Rev. A 27, 408417.
Knobloch, E., Moore, D. R., Toomre, J. & Weiss, N. O. 1986 Transitions to chaos in two-dimensional double-diffusive convection. J. Fluid Mech. 166, 409448.
Knobloch, E., Weiss, N. O. & Da Costa, L. N. 1981 Oscillatory and steady convection in a magnetic field. J. Fluid Mech. 113, 153186.
Krishnamurti, R. 1970 On the transition to turbulent convection. Part 2. The transition to time-dependent flow. J. Fluid Mech. 42, 309320.
Libchaber, A., Fauve, S. & Laroche, C. 1983 Two parameter study of the routes to chaos. Physica 7D, 7384.
Libchaber, A. & Maurer, J. 1982 A Rayleigh—Bénard experiment: helium in a small box. In Nonlinear Phenomena at Phase Transitions and Instabilities (ed. T. Riste), pp. 259286. Plenum.
Lorenz, E. N. 1963 Deterministic nonperiodic flow. J. Atmos. Sci 20, 130141.
McKenzie, D. P., Roberts, J. M. & Weiss, N. O. 1974 Convection in the earth's mantle: towards a numerical simulation. J. Fluid Mech. 62, 465538.
Malkus, W. V. R. 1972 Non-periodic convection at high and low Prandtl number. Mem. Soc. R. Sci. Liège (6) 4, 125128.
Maschke, E. K. & Saramito, B. 1982 On truncated-series approximations in the theory of Rayleigh—Bénard convection. Phys. Lett. 88A, 154156.
Moore, D. R. 1988 Efficient explicit real FFTS for rapid elliptic solvers. J. Comp. Phys. (submitted).
Moore, D. R., Peckover, R. S. & Weiss, N. O. 1974 Difference methods for time-dependent two-dimensional convection. Comp. Phys. Commun. 6, 198220.
Moore, D. R. & Wallcraft, A. J. 1988 Rapid elliptic solvers for vector computers. J. Comp. Phys. (submitted).
Moore, D. R. & Weiss, N. O. 1973a Two-dimensional Rayleigh—Bénard convection. J. Fluid Mech. 58, 289312.
Moore, D. R. & Weiss, N. O. 1973b Nonlinear penetrative convection. J. Fluid Mech. 61, 553581.
Normand, C., Pomeau, Y. & Velarde, M. G. 1977 Convective instability: a physicist's approach. Rev. Mod. Phys. 49, 581624.
Plows, W. H. 1968 Some numerical results for two-dimensional steady laminar Bénard convection. Phys. Fluids 11, 15931599.
Pomeau, Y. & Manneville, P. 1980 Intermittent transition to turbulence in dissipative dynamical systems. Commun. Math. Phys. 74, 189197.
Rabaud, M. & Couder, Y. 1983 A shear-flow instability in a circular geometry. J. Fluid Mech. 136, 291319.
Rand, D. 1982 Dynamics and symmetry: predictions for modulated waves in rotating fluids. Arch. Rat. Mech. Anal. 79, 137.
Roberts, G. O. 1979 Fast viscous Bénard convection. Geophys. Astrophys. Fluid Dyn. 12, 235272.
Roberts, P. H. 1967 Convection in horizontal layers with internal heat generation. Theory. J. Fluid Mech. 30, 3349.
Schneck, P. & Veronis, G. 1967 Comparison of some recent experimental and numerical results in Bénard convection. Phys. Fluids 10, 927930.
Sparrow, C. T. 1982 The Lorenz Equations: Bifurcations, Chaos and Strange Attractors. Springer.
Sparrow, E. M., Goldstein, R. J. & Jonsson, V. K. 1964 Thermal instability in a horizontal fluid layer: effect of boundary conditions and nonlinear temperature profile. J. Fluid Mech. 18, 513528.
Spiegel, E. A. 1971 Convection in stars. I, Basic Boussinesq convection. Ann. Rev. Astron. Astrophys. 9, 323352.
Thirlby, R. 1970 Convection in an internally heated layer. J. Fluid Mech. 44, 673693.
Treve, V. M. & Manley, O. P. 1982 Energy conserving Galerkin approximations for 2-D hydrodynamic and MHD Bénard convection. Physica 4D, 319342.
Veronis, G. 1966 Large amplitude Bénard convection. J. Fluid Mech. 26, 4968.
Walden, R. W., Kolodner, P., Passner, A. & Surko, C. M. 1984 Nonchaotic Rayleigh—Bénard convection with four and five incommensurate frequencies. Phys. Rev. Lett. 53, 242245.
Weiss, N. O. 1981 Convection in an imposed magnetic field II. The dynamical regime. J. Fluid Mech. 108, 273289.
Welander, P. 1967 On the oscillatory instability of a differentially heated fluid loop. J. Fluid Mech. 29, 1730.
MathJax is a JavaScript display engine for mathematics. For more information see

Related content

Powered by UNSILO

The breakdown of steady convection

  • T. B. Lennie (a1), D. P. Mckenzie (a2), D. R. Moore (a3) and N. O. Weiss (a4)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.