Hostname: page-component-5b777bbd6c-kmmxp Total loading time: 0 Render date: 2025-06-25T09:08:31.894Z Has data issue: false hasContentIssue false

Bubble shape oscillations in a turbulent environment

Published online by Cambridge University Press:  11 December 2024

Aliénor Rivière
Affiliation:
PMMH, CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université de Paris, 75005 Paris, France
Kamel Abahri
Affiliation:
PMMH, CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université de Paris, 75005 Paris, France
Stéphane Perrard*
Affiliation:
PMMH, CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université de Paris, 75005 Paris, France
*
Email address for correspondence: stephane.perrard@espci.fr

Abstract

We study single bubble deformation statistics in an homogeneous and isotropic turbulent flow by means of direct numerical simulations. We consider bubbles at low Weber number ($We <3$) that have not been broken. We show that we can reproduce bubble deformations with a linear dynamics for each spherical harmonic mode. Inferring the coefficients of the linear model from the DNS data, we find that the natural frequency corresponds to the Rayleigh frequency, derived in a quiescent flow. However, the effective damping increases by a factor 7 compared with the quiescent case, at Taylor Reynolds number $\textit {Re}_\lambda = 55$. Looking at the flow structure around the bubble, we argue that the enhanced damping originates from a thick boundary layer surrounding the bubble. We demonstrate that the effective forcing, originating from the turbulent flow forcing on the bubble surface, is independent of bubble deformability. Therefore, the interface deformations are only one-way coupled to the flow. From this model we conclude that bubbles break rather from turbulent fluctuations than from a resonant mechanism. Eventually, we investigate the pressure modes’ statistics in the absence of bubbles and compare them with the effective forcing statistics. We show that both fields share the same probability distribution function, characterized by exponential tails, and a characteristic time scale corresponding to the eddy turnover time at the mode scale.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abry, P., Fauve, S., Flandrin, P. & Laroche, C. 1994 Analysis of pressure fluctuations in swirling turbulent flows. J. Phys. 4 (5), 725733.Google Scholar
Abu-Al-Saud, M.O., Popinet, S. & Tchelepi, H.A. 2018 A conservative and well-balanced surface tension model. J. Comput. Phys. 371, 896913.CrossRefGoogle Scholar
Bappy, M., Carrica, P.M. & Buscaglia, G.C. 2019 Lagrangian statistics of pressure fluctuation events in homogeneous isotropic turbulence. Phys. Fluids 31 (8), 085111.CrossRefGoogle Scholar
Bappy, M.H., Carrica, P.M., Vela-Martín, A., Freire, L.S. & Buscaglia, G.C. 2020 a Pressure statistics of gas nuclei in homogeneous isotropic turbulence with an application to cavitation inception. Phys. Fluids 32 (9), 095107.CrossRefGoogle Scholar
Bappy, M.H., Vela-Martin, A., Buscaglia, G.C., Carrica, P.M. & Freire, L.S. 2020 b Effect of bubble size on Lagrangian pressure statistics in homogeneous isotropic turbulence. In Journal of Physics: Conference Series, vol. 1522, p. 012002. IOP Publishing.CrossRefGoogle Scholar
Berry, S.R., Hyers, R.W., Racz, L.M. & Abedian, B. 2005 Surface oscillations of an electromagnetically levitated droplet. Intl J. Thermophys. 26, 15651581.CrossRefGoogle Scholar
Bojarevics, V. & Pericleous, K. 2003 Modelling electromagnetically levitated liquid droplet oscillations. ISIJ Intl 43 (6), 890898.CrossRefGoogle Scholar
Boussinesq, J. 1877 Essai sur la théorie des eaux courantes. Impr. nationale.Google Scholar
Brouzet, C., Guiné, R., Dalbe, M.-J., Favier, B., Vandenberghe, N., Villermaux, E. & Verhille, G. 2021 Laboratory model for plastic fragmentation in the turbulent ocean. Phys. Rev. Fluids 6 (2), 024601.CrossRefGoogle Scholar
Cadot, O., Douady, S. & Couder, Y. 1995 Characterization of the low-pressure filaments in a three-dimensional turbulent shear flow. Phys. Fluids 7 (3), 630646.CrossRefGoogle Scholar
Calzavarini, E., Volk, R., Bourgoin, M., Lévêque, E., Pinton, J.-F. & Toschi, F. 2009 Acceleration statistics of finite-sized particles in turbulent flow: the role of faxén forces. J. Fluid Mech. 630, 179189.CrossRefGoogle Scholar
Cao, N., Chen, S. & Doolen, G.D. 1999 Statistics and structures of pressure in isotropic turbulence. Phys. Fluids 11 (8), 22352250.CrossRefGoogle Scholar
Chandrasekhar, S. 1959 The oscillations of a viscous liquid globe. Proc. Lond. Math. Soc. 3 (1), 141149.CrossRefGoogle Scholar
Chandrasekhar, S. 2013 Hydrodynamic and Hydromagnetic Stability. Courier Corporation.Google Scholar
Chiarini, A. & Rosti, M.E. 2024 Finite-size inertial spherical particles in turbulence. J. Fluid Mech. 988, A17.CrossRefGoogle Scholar
De Langre, E. 2008 Effects of wind on plants. Annu. Rev. Fluid Mech. 40, 141168.CrossRefGoogle Scholar
Deike, L. 2022 Mass transfer at the ocean–atmosphere interface: the role of wave breaking, droplets, and bubbles. Annu. Rev. Fluid Mech. 54, 191224.CrossRefGoogle Scholar
Douady, S., Couder, Y. & Brachet, M.E. 1991 Direct observation of the intermittency of intense vorticity filaments in turbulence. Phys. Rev. Lett. 67 (8), 983.CrossRefGoogle ScholarPubMed
Fan, Y., Wang, C., Jiang, L., Sun, C. & Calzavarini, E. 2024 Accelerations of large inertial particles in turbulence. Europhys. Lett. 145 (4), 43001.CrossRefGoogle Scholar
Fauve, S., Laroche, C. & Castaing, B. 1993 Pressure fluctuations in swirling turbulent flows. J. Phys. 3 (3), 271278.Google Scholar
Galinat, S., Risso, F., Masbernat, O. & Guiraud, P. 2007 Dynamics of drop breakup in inhomogeneous turbulence at various volume fractions. J. Fluid Mech. 578, 8594.CrossRefGoogle Scholar
Gitterman, M. 2005 Noisy Oscillator, The: The First Hundred Years, From Einstein Until Now. World Scientific.CrossRefGoogle Scholar
Gotoh, T. & Rogallo, R.S. 1999 Intermittency and scaling of pressure at small scales in forced isotropic turbulence. J. Fluid Mech. 396, 257285.CrossRefGoogle Scholar
Håkansson, A. 2019 Emulsion formation by homogenization: current understanding and future perspectives. Annu. Rev. Food Sci. Technol. 10, 239258.CrossRefGoogle ScholarPubMed
Håkansson, A. 2021 The role of stochastic time-variations in turbulent stresses when predicting drop breakup—a review of modelling approaches. Processes 9 (11), 1904.CrossRefGoogle Scholar
Hinze, J.O. 1955 Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE J. 1 (3), 289295.CrossRefGoogle Scholar
Homann, H. & Bec, J. 2010 Finite-size effects in the dynamics of neutrally buoyant particles in turbulent flow. J. Fluid Mech. 651, 8191.CrossRefGoogle Scholar
Ishihara, T., Kaneda, Y., Yokokawa, M., Itakura, K. & Uno, A. 2003 Spectra of energy dissipation, enstrophy and pressure by high-resolution direct numerical simulations of turbulence in a periodic box. J. Phys. Soc. Japan 72 (5), 983986.CrossRefGoogle Scholar
Kang, I.S. & Leal, L.G. 1988 Small-amplitude perturbations of shape for a nearly spherical bubble in an inviscid straining flow (steady shapes and oscillatory motion). J. Fluid Mech. 187, 231266.CrossRefGoogle Scholar
Kolmogorov, A. 1949 On the breakage of drops in a turbulent flow. In Dokl. Akad. Navk. SSSR, vol. 66, pp. 825–828.Google Scholar
Kraichnan, R.H. 1964 Kolmogorov's hypotheses and Eulerian turbulence theory. Phys. Fluids 7 (11), 17231734.CrossRefGoogle Scholar
Lalanne, B., Masbernat, O. & Risso, F. 2019 A model for drop and bubble breakup frequency based on turbulence spectra. AIChE J. 65 (1), 347359.CrossRefGoogle Scholar
Lamb, H. 1932 Hydrodynamics, vol. 427. Cambridge University Press.Google Scholar
Lee, C.-H., Erickson, L.E. & Glasgow, L.A. 1987 Bubble breakup and coalescence in turbulent gas-liquid dispersions. Chem. Engng Commun. 59 (1–6), 6584.CrossRefGoogle Scholar
Luo, H. & Svendsen, H.F. 1996 Theoretical model for drop and bubble breakup in turbulent dispersions. AIChE J. 42 (5), 12251233.CrossRefGoogle Scholar
Maniero, R., Masbernat, O., Climent, E. & Risso, F. 2012 Modeling and simulation of inertial drop break-up in a turbulent pipe flow downstream of a restriction. Intl J. Multiphase Flow 42, 18.CrossRefGoogle Scholar
Martínez-Bazán, C., Montanes, J.L. & Lasheras, J.C. 1999 On the breakup of an air bubble injected into a fully developed turbulent flow. Part 1. Breakup frequency. J. Fluid Mech. 401, 157182.CrossRefGoogle Scholar
Masuk, A.U.M., Qi, Y., Salibindla, A.K.R. & Ni, R. 2021 a Towards a phenomenological model on the deformation and orientation dynamics of finite-sized bubbles in both quiescent and turbulent media. J. Fluid Mech. 920, A4.CrossRefGoogle Scholar
Masuk, A.U.M., Salibindla, A.K.R. & Ni, R. 2021 b Simultaneous measurements of deforming Hinze-scale bubbles with surrounding turbulence. J. Fluid Mech. 910, A21.CrossRefGoogle Scholar
Maxey, M.R. & Riley, J.J. 1983 Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26 (4), 883889.CrossRefGoogle Scholar
Miller, C.A. & Scriven, L.E. 1968 The oscillations of a fluid droplet immersed in another fluid. J. Fluid Mech. 32 (3), 417435.CrossRefGoogle Scholar
Mordant, N., Crawford, A.M. & Bodenschatz, E. 2004 Three-dimensional structure of the lagrangian acceleration in turbulent flows. Phys. Rev. Lett. 93 (21), 214501.CrossRefGoogle ScholarPubMed
Ni, R. 2024 Deformation and breakup of bubbles and drops in turbulence. Annu. Rev. Fluid Mech. 56 (1), 319347.CrossRefGoogle Scholar
Perrard, S., Rivière, A., Mostert, W. & Deike, L. 2021 Bubble deformation by a turbulent flow. J. Fluid Mech. 920, A15.CrossRefGoogle Scholar
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.Google Scholar
Popinet, S. 2003 Gerris: a tree-based adaptive solver for the incompressible euler equations in complex geometries. J. Comput. Phys. 190 (2), 572600.CrossRefGoogle Scholar
Popinet, S. 2009 An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228, 58385866.CrossRefGoogle Scholar
Prakash, V.N., Tagawa, Y., Calzavarini, E., Mercado, J.M. Toschi, F., Lohse, D. & Sun, C. 2012 How gravity and size affect the acceleration statistics of bubbles in turbulence. New J. Phys. 14 (10), 105017.CrossRefGoogle Scholar
Prandtl, L. 1949 Report on investigation of developed turbulence. Z. Angew. Math. Mech. 5 (NACA-TM-1231).Google Scholar
Prosperetti, A. 1977 Viscous effects on perturbed spherical flows. Q. Appl. Maths 34 (4), 339352.CrossRefGoogle Scholar
Prosperetti, A. 1980 Free oscillations of drops and bubbles: the initial-value problem. J. Fluid Mech. 100 (2), 333347.CrossRefGoogle Scholar
Pullin, D.I. & Rogallo, R.S. 1994 Pressure and higher-order spectra for homogeneous isotropic turbulence. In Stanford Univ., Studying Turbulence Using Numerical Simulation Databases. 5: Proceedings of the 1994 Summer Program. https://ntrs.nasa.gov/citations/19950014628.Google Scholar
Pumir, A. 1994 A numerical study of pressure fluctuations in three-dimensional, incompressible, homogeneous, isotropic turbulence. Phys. Fluids 6 (6), 20712083.CrossRefGoogle Scholar
Qureshi, N.M., Bourgoin, M., Baudet, C., Cartellier, A. & Gagne, Y. 2007 Turbulent transport of material particles: an experimental study of finite size effects. Phys. Rev. Lett. 99 (18), 184502.CrossRefGoogle ScholarPubMed
Ravelet, F., Colin, C. & Risso, F. 2011 On the dynamics and breakup of a bubble rising in a turbulent flow. Phys. Fluids 23 (10), 103301.CrossRefGoogle Scholar
Rayleigh, Lord 1879 On the capillary phenomena of jets. Proc. R. Soc. Lond. 29 (196–199), 7197.Google Scholar
Reid, W.H. 1960 The oscillations of a viscous liquid drop. Q. Appl. Maths 18 (1), 8689.CrossRefGoogle Scholar
Risso, F. 2018 Agitation, mixing, and transfers induced by bubbles. Annu. Rev. Fluid Mech. 50, 2548.CrossRefGoogle Scholar
Risso, F. & Fabre, J. 1998 Oscillations and breakup of a bubble immersed in a turbulent field. J. Fluid Mech. 372, 323355.CrossRefGoogle Scholar
Rivière, A., Duchemin, L., Josserand, C. & Perrard, S. 2023 Bubble breakup reduced to a one-dimensional nonlinear oscillator. Phys. Rev. Fluids 8 (9), 094004.CrossRefGoogle Scholar
Rivière, A., Mostert, W., Perrard, S. & Deike, L. 2021 Sub-Hinze scale bubble production in turbulent bubble break-up. J. Fluid Mech. 917, A40.CrossRefGoogle Scholar
Roa, I., Renoult, M.-C., Dumouchel, C., Brändle de Motta, J.C. 2023 Droplet oscillations in a turbulent flow. Front. Phys. 11, 1173521.CrossRefGoogle Scholar
Rosales, C. & Meneveau, C. 2005 Linear forcing in numerical simulations of isotropic turbulence: physical space implementations and convergence properties. Phys. Fluids 17 (9), 095106.CrossRefGoogle Scholar
Rosti, M.E., Banaei, A.A., Brandt, L. & Mazzino, A. 2018 Flexible fiber reveals the two-point statistical properties of turbulence. Phys. Rev. Lett. 121 (4), 044501.CrossRefGoogle ScholarPubMed
Ruth, D.J., Mostert, W., Perrard, S. & Deike, L. 2019 Bubble pinch-off in turbulence. Proc. Natl Acad. Sci. USA 116 (51), 2541225417.CrossRefGoogle ScholarPubMed
Salibindla, A.K.R., Masuk, A.U.M. & Ni, R. 2021 Experimental investigation of the acceleration statistics and added-mass force of deformable bubbles in intense turbulence. J. Fluid Mech. 912, A50.CrossRefGoogle Scholar
Sevik, M. & Park, S.H. 1973 The splitting of drops and bubbles by turbulent fluid flow. Trans. ASME J. Fluids Engng 95 (1), 5360.CrossRefGoogle Scholar
Shen, J., Peng, C., Wu, J., Chong, K.L., Lu, Z. & Wang, L.-P. 2022 Turbulence modulation by finite-size particles of different diameters and particle–fluid density ratios in homogeneous isotropic turbulence. J. Turbul. 23 (8), 433453.CrossRefGoogle Scholar
Tennekes, H. 1975 Eulerian and Lagrangian time microscales in isotropic turbulence. J. Fluid Mech. 67 (3), 561567.CrossRefGoogle Scholar
Toschi, F. & Bodenschatz, E. 2009 Lagrangian properties of particles in turbulence. Annu. Rev. Fluid Mech. 41, 375404.CrossRefGoogle Scholar
Vedula, P. & Yeung, P.-K. 1999 Similarity scaling of acceleration and pressure statistics in numerical simulations of isotropic turbulence. Phys. Fluids 11 (5), 12081220.CrossRefGoogle Scholar
Vela-Martín, A. & Avila, M. 2021 Deformation of drops by outer eddies in turbulence. J. Fluid Mech. 929, A38.CrossRefGoogle Scholar
Vela-Martín, A. & Avila, M. 2022 Memoryless drop breakup in turbulence. Sci. Adv. 8 (50), eabp9561.CrossRefGoogle ScholarPubMed
Verhille, G. 2022 Deformability of discs in turbulence. J. Fluid Mech. 933, A3.CrossRefGoogle Scholar
Volk, R., Calzavarini, E., Leveque, E. & Pinton, J.-F. 2011 Dynamics of inertial particles in a turbulent von Kármán flow. J. Fluid Mech. 668, 223235.CrossRefGoogle Scholar
Volk, R., Calzavarini, E., Verhille, G., Lohse, D., Mordant, N., Pinton, J.-F. & Toschi, F. 2008 Acceleration of heavy and light particles in turbulence: comparison between experiments and direct numerical simulations. Physica D 237 (14–17), 20842089.CrossRefGoogle Scholar
Voth, G.A., La Porta, A., Crawford, A.M., Alexander, J. & Bodenschatz, E. 2002 Measurement of particle accelerations in fully developed turbulence. J. Fluid Mech. 469, 121160.CrossRefGoogle Scholar
Wang, T., Wang, J. & Jin, Y. 2003 A novel theoretical breakup kernel function for bubbles/droplets in a turbulent flow. Chem. Engng Sci. 58 (20), 46294637.CrossRefGoogle Scholar
Xiao, X., Brillo, J., Lee, J., Hyers, R.W. & Matson, D.M. 2021 Impact of convection on the damping of an oscillating droplet during viscosity measurement using the ISS-EML facility. npj Microgravity 7 (1), 36.CrossRefGoogle ScholarPubMed
Yao, H.-D., He, G.-W., Wang, M. & Zhang, X. 2008 Time correlations of pressure in isotropic turbulence. Phys. Fluids 20 (2), 025105.CrossRefGoogle Scholar