Skip to main content Accessibility help
×
Home

Bubbly drag reduction using a hydrophobic inner cylinder in Taylor–Couette turbulence

  • Pim A. Bullee (a1) (a2), Ruben A. Verschoof (a1), Dennis Bakhuis (a1), Sander G. Huisman (a1), Chao Sun (a1) (a3), Rob G. H. Lammertink (a2) and Detlef Lohse (a1) (a4)...

Abstract

In this study we experimentally investigate bubbly drag reduction in a highly turbulent flow of water with dispersed air at $5.0\times 10^{5}\leqslant Re\leqslant 1.7\times 10^{6}$ over a non-wetting surface containing micro-scale roughness. To do so, the Taylor–Couette geometry is used, allowing for both accurate global drag and local flow measurements. The inner cylinder – coated with a rough, hydrophobic material – is rotating, whereas the smooth outer cylinder is kept stationary. The crucial control parameter is the air volume fraction $\unicode[STIX]{x1D6FC}$ present in the working fluid. For small volume fractions ( $\unicode[STIX]{x1D6FC}<4\,\%$ ), we observe that the surface roughness from the coating increases the drag. For large volume fractions of air ( $\unicode[STIX]{x1D6FC}\geqslant 4\,\%$ ), the drag decreases compared to the case with both the inner and outer cylinders uncoated, i.e. smooth and hydrophilic, using the same volume fraction of air. This suggests that two competing mechanisms are at play: on the one hand, the roughness invokes an extension of the log layer – resulting in an increase in drag – and, on the other hand, there is a drag-reducing mechanism of the hydrophobic surface interacting with the bubbly liquid. The balance between these two effects determines whether there is overall drag reduction or drag enhancement. For further increased bubble concentration $\unicode[STIX]{x1D6FC}=6\,\%$ we find a saturation of the drag reduction effect. Our study gives guidelines for industrial applications of bubbly drag reduction in hydrophobic wall-bounded turbulent flows.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Bubbly drag reduction using a hydrophobic inner cylinder in Taylor–Couette turbulence
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Bubbly drag reduction using a hydrophobic inner cylinder in Taylor–Couette turbulence
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Bubbly drag reduction using a hydrophobic inner cylinder in Taylor–Couette turbulence
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike licence (http://creativecommons.org/licenses/by-nc-sa/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the same Creative Commons licence is included and the original work is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use.

Corresponding author

References

Hide All
Aljallis, E., Sarshar, M. A., Datla, R., Sikka, V., Jones, A. & Choi, C. 2013 Experimental study of skin friction drag reduction on superhydrophobic flat plates in high Reynolds number boundary layer flow. Phys. Fluids 25 (2), 025103.
van den Berg, T. H., van Gils, D. P. M., Lathrop, D. P. & Lohse, D. 2007 Bubbly turbulent drag reduction is a boundary layer effect. Phys. Rev. Lett. 98, 084501.
van den Berg, T. H., Luther, S., Lathrop, D. P. & Lohse, D. 2005 Drag reduction in bubbly Taylor–Couette turbulence. Phys. Rev. Lett. 94, 044501.
Berghout, P., Zhu, X., Chung, D., Verzicco, R., Stevens, R. J. A. M. & Lohse, D. 2019 Direct numerical simulations of Taylor–Couette turbulence: the effect of sand grain roughness. J. Fluid Mech. 873, 260286.
Bidkar, R. A., Leblanc, L., Kulkarni, A. J., Bahadur, V., Ceccio, S. L. & Perlin, M. 2014 Skin-friction drag reduction in the turbulent regime using random-textured hydrophobic surfaces. Phys. Fluids 26 (8), 085108.
Busse, A., Thakkar, M. & Sandham, N. D. 2017 Reynolds-number dependence of the near-wall flow over irregular rough surfaces. J. Fluid Mech. 810, 196224.
Ceccio, S. L. 2010 Friction drag reduction of external flows with bubble and gas injection. Annu. Rev. Fluid Mech. 42, 183203.
Daniello, R. J., Waterhouse, N. E. & Rothstein, J. P. 2009 Drag reduction in turbulent flows over superhydrophobic surfaces. Phys. Fluids 21 (8), 085103.
Domingues, E. M., Arunachalam, S. & Mishra, H. 2017 Doubly reentrant cavities prevent catastrophic wetting transitions on intrinsically wetting surfaces. ACS Appl. Mater. Interfaces 9, 2153221538.
Dong, H., Cheng, M., Zhang, Y., Wei, H. & Shi, F. 2013 Extraordinary drag-reducing effect of a superhydrophobic coating on a macroscopic model ship at high speed. J. Mater. Chem. A 1, 58865891.
Du, P., Wen, J., Zhang, Z., Song, D., Ouahsine, A. & Hu, H. 2017 Maintenance of air layer and drag reduction on superhydrophobic surface. Ocean Engng 130, 328335.
Flack, K. A. & Schultz, M. P. 2010 Review of hydraulic roughness scales in the fully rough regime. Trans. ASME J. Fluids Engng 132, 0412301.
Flack, K. A. & Schultz, M. P. 2014 Roughness effects on wall-bounded turbulent flows. Phys. Fluids 26 (10), 101305.
Fokoua, G. N., Gabillet, C., Aubert, A. & Colin, C. 2015 Effect of bubble’s arrangement on the viscous torque in bubbly Taylor–Couette flow. Phys. Fluids 27 (3), 034105.
Fukuda, K., Tokunaga, J., Nobunaga, T., Nakatani, T., Iwasaki, T. & Kunitake, Y. 2000 Frictional drag reduction with air lubricant over a super-water-repellent surface. J. Mar. Sci. Technol. 5 (3), 123130.
van Gils, D. P. M., Bruggert, G. W., Lathrop, D. P., Sun, C. & Lohse, D. 2011 The Twente turbulent Taylor–Couette (T3C) facility: strongly turbulent (multi-phase) flow between independently rotating cylinders. Rev. Sci. Instrum. 82, 025105.
van Gils, D. P. M., Narezo Guzman, D., Sun, C. & Lohse, D. 2013 The importance of bubble deformability for strong drag reduction in bubbly turbulent Taylor–Couette flow. J. Fluid Mech. 722, 317347.
Göbel, J. G. & Joppien, G. R. 1997 Dynamic interfacial tensions of aqueous Triton X-100 solutions in contact with air, cyclohexane, n-heptane, and n-hexadecane. J. Colloid Iterface Sci. 191 (1), 3037.
Gose, J. W., Golovin, K., Boban, M., Mabry, J. M., Tuteja, A., Perlin, M. & Ceccio, S. L. 2018 Characterization of superhydrophobic surfaces for drag reduction in turbulent flow. J. Fluid Mech. 845, 560580.
Haase, A. S., Karatay, E., Tsai, P. A. & Lammertink, R. G. H. 2013 Momentum and mass transport over a bubble mattress: the influence of interface geometry. Soft Matt. 9, 89498957.
Hokmabad, B. V. & Ghaemi, S. 2016 Turbulent flow over wetted and non-wetted superhydrophobic counterparts with random structure. Phys. Fluids 28 (1), 015112.
Hokmabad, B. V. & Ghaemi, S. 2017 Effect of flow and particle-plastron collicion on the longevity of superhydrophobicity. Sci. Rep. 7, 41448.
Huisman, S. G., Scharnowski, S., Cierpka, C., Kähler, C. J., Lohse, D. & Sun, C. 2013 Logarithmic boundary layers in strong Taylor–Couette turbulence. Phys. Rev. Lett. 110, 264501.
Jiménez, J. 2004 Turbulent flows over rough walls. Annu. Rev. Fluid Mech. 36, 173196.
Kim, J. & Lee, J. S. 2017 Surface-wettability-induced sliding bubble dynamics and its effects on convective heat transfer. Appl. Therm. Engng 113, 639652.
Kitagawa, A., Denissenko, P. & Murai, Y. 2019 Behavior of bubbles moving along horizontal flat plates with different surface wettability. Exp. Therm. Fluid Sci. 104, 141152.
Li, X., Reinhoudt, D. & Crego-Calama, M. 2007 What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chem. Soc. Rev. 36, 13501368.
Ling, H., Srinivasan, S., Golovin, K., Mckinley, G. H., Tuteja, A. & Katz, J. 2016 High-resolution velocity measurement in the inner part of turbulent boundary layers over super-hydrophobic surfaces. J. Fluid Mech. 801, 670703.
Lohse, D. 2018 Bubble puzzles: from fundamentals to applications. Phys. Rev. Fluids 3, 110504.
Lu, J., Fernández, A. & Tryggvason, G. 2005 The effect of bubbles on the wall drag in a turbulent channel flow. Phys. Fluids 17 (9), 095102.
Lv, P., Xue, Y., Shi, Y., Lin, H. & Duan, H. 2014 Metastable states and wetting transition of submerged superhydrophobic structures. Phys. Rev. Lett. 112, 196101.
MacDonald, M., Chan, L., Chung, D., Hutchins, N. & Ooi, A. 2016 Turbulent flow over transitionally rough surfaces with varying roughness densities. J. Fluid Mech. 804, 130161.
Madavan, N. K., Deutsch, S. & Merkle, C. L. 1984 Reduction of turbulent skin friction by microbubbles. Phys. Fluids 27 (2), 356363.
Madavan, N. K., Deutsch, S. & Merkle, C. L. 1985 Measurements of local skin friction in a microbubble-modified turbulent boundary layer. J. Fluid Mech. 156, 237256.
Martell, M. B., Perot, J. B. & Rothstein, J. P. 2009 Direct numerical simulations of turbulent flows over superhydrophobic surfaces. J. Fluid Mech. 620, 3141.
McCormick, M. E. & Bhattacharyya, R. 1973 Drag reduction of a submersible hull by electrolysis. Nav. Eng. J. 85 (2), 1116.
McHale, G., Flynn, M. R. & Newton, M. I. 2011 Plastron induced drag reduction and increased slip on a superhydrophobic. Soft Matt. 7, 1010010107.
McHale, G., Shirtcliffe, N. J., Evans, C. R. & Newton, M. I. 2009 Terminal velocity and drag reduction measurements on superhydrophobic spheres terminal velocity and drag reduction measurements on superhydrophobic. Appl. Phys. Lett. 94 (6), 064104.
Murai, Y. 2014 Frictional drag reduction by bubble injection. Exp. Fluids 55 (7), 1773.
Nikuradse, J. 1933 Laws of flow in rough pipes (in German). VDI Forschungsheft 361 (translation in NACA Tech. Mem. 1292).
Panchanathan, D., Rajappan, A., Varanasi, K. K. & McKinley, G. H. 2018 Plastron regeneration on submerged superhydrophobic surfaces using in situ gas generation by chemical reaction. ACS Appl. Mater. Interfaces 10 (39), 3368433692.
Park, H., Park, H. & Kim, J. 2013 A numerical study of the effects of superhydrophobic surface on skin-friction drag in turbulent channel flow. Phys. Fluids 25 (25), 110815.
Park, H., Sun, G. & Kim, C. 2014 Superhydrophobic turbulent drag reduction as a function of surface grating parameters. J. Fluid Mech. 747, 722734.
Park, S., Lee, S., Moreira, D., Bandaru, P. R., Han, I. & Yun, D. 2015 Bioinspired superhydrophobic surfaces, fabricated through simple and scalable roll-to-roll processing. Sci. Rep. 5, 15430.
Peters, A. M., Pirat, C., Sbragaglia, M., Borkent, B. M., Wessling, M., Lohse, D. & Lammertink, R. G. H. 2009 Cassie-Baxter to Wenzel state wetting transition: scaling of the front velocity. Eur. Phys. J. E 29, 391397.
Poetes, R., Holtzmann, K., Franze, K. & Steiner, U. 2010 Metastable underwater superhydrophobicity. Phys. Rev. Lett. 105, 166104.
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.
Qi, D., Lu, N., Xu, H., Yang, B., Huang, C., Xu, M., Gao, L., Wang, Z. & Chi, L. 2009 Simple approach to wafer-scale self-cleaning antireflective silicon surfaces. Langmuir 25, 77697772.
Rastegari, A. & Akhavan, R. 2018 The common mechanism of turbulent skin-friction drag reduction with superhydrophobic longitudinal microgrooves and riblets. J. Fluid Mech. 838, 68104.
Reholon, D. & Ghaemi, S. 2018 Plastron morphology and drag of a superhydrophobic surface in turbulent regime. Phys. Rev. Fluids 3, 104003.
Rosenberg, B. J., Van Buren, T., Fu, M. K. & Smits, A. J. 2016 Turbulent drag reduction over air- and liquid-impregnated surfaces. Phys. Fluids 28 (1), 015103.
Rothstein, J. P. 2010 Slip on superhydrophobic surfaces. Annu. Rev. Fluid Mech. 42, 89109.
Sanders, W. C., Winkel, E. S., Dowling, D. R., Perlin, M. & Ceccio, S. L. 2006 Bubble friction drag reduction in a high-Reynolds-number flat-plate turbulent boundary layer. J. Fluid Mech. 552, 353380.
Saranadhi, D., Chen, D., Kleingartner, J. A., Srinivasan, S., Cohen, R. E. & McKinley, G. H. 2016 Sustained drag reduction in a turbulent flow using a low-temperature Leidenfrost surface. Sci. Adv. 2 (10), e1600686.
Schlichting, H. & Gersten, K. 2000 Boundary Layer Theory, 8th edn. Springer.
Shirtcliffe, N. J., McHale, G., Newton, M. I., Perry, C. C. & Pyatt, F. B. 2006 Plastron properties of a superhydrophobic surface. Appl. Phys. Lett. 89 (10), 104106.
Spandan, V., Verzicco, R. & Lohse, D. 2018 Physical mechanisms governing drag reduction in turbulent Taylor–Couette flow with finite-size deformable bubbles. J. Fluid Mech. 849, R3.
Srinivasan, S., Chhatre, S. S., Mabry, J. M., Cohen, R. E. & McKinley, G. H. 2011 Solution spraying of poly(methyl methacrylate) blends to fabricate microtextured, superoleophobic surfaces. Polymer 52 (14), 32093218.
Srinivasan, S., Kleingartner, J. A., Gilbert, J. B., Cohen, R. E., Milne, A. J. B. & McKinley, G. H. 2015 Sustainable drag reduction in turbulent Taylor–Couette flows by depositing sprayable superhydrophobic surfaces. Phys. Rev. Lett. 114, 014501.
Sugiyama, K., Calzavarini, E. & Lohse, D. 2008 Microbubbly drag reduction in Taylor–Couette flow in the wavy vortex regime. J. Fluid Mech. 608, 2141.
Tsai, T., Peters, A. M., Pirat, C., Wessling, M., Lammertink, R. G. H. & Lohse, D. 2009 Quantifying effective slip length over micropatterned hydrophobic surfaces. Phys. Fluids 21, 112002.
Van Buren, T. & Smits, A. J. 2017 Substantial drag reduction in turbulent flows using liquid-infused surfaces. J. Fluid Mech. 827, 448456.
Verschoof, R. A., van der Veen, R. C. A., Sun, C. & Lohse, D. 2016 Bubble drag reduction requires large bubbles. Phys. Rev. Lett. 117, 104502.
Verschoof, R. A., Bakhuis, D., Bullee, P. A., Huisman, S. G., Sun, C. & Lohse, D. 2018a The influence of wall roughness on bubble drag reduction in Taylor–Couette turbulence. J. Fluid Mech. 851, 436446.
Verschoof, R. A., Zhu, X., Bakhuis, D., Huisman, S. G., Verzicco, R., Sun, C. & Lohse, D. 2018b Rough-wall turbulent Taylor–Couette flow: the effect of the rib height. Eur. Phys. J. E 41 (10), 125.
Watanabe, O., Masuko, A. & Yasushi, S. 1998 Measurements of drag reduction by microbubbles using very long ship models. J. Soc. Nav. Archit. Japan 183, 5363.
Xiang, Y., Huang, S., Lv, P., Xue, Y., Su, Q. & Duan, H. 2017 Ultimate stable underwater superhydrophobic state. Phys. Rev. Lett. 119, 134501.
Xiang, Y., Xue, Y., Lv, P., Li, D. & Duan, H. 2016 Influence of fluid flow on the stability and wetting transition of submerged superhydrophobic surfaces. Soft Matt. 12, 42414246.
Zhu, X., Verschoof, R. A., Bakhuis, D., Huisman, S. G., Verzicco, R., Sun, C. & Lohse, D. 2018 Wall roughness induces asymptotic ultimate turbulence. Nat. Phys. 14, 417423.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Bubbly drag reduction using a hydrophobic inner cylinder in Taylor–Couette turbulence

  • Pim A. Bullee (a1) (a2), Ruben A. Verschoof (a1), Dennis Bakhuis (a1), Sander G. Huisman (a1), Chao Sun (a1) (a3), Rob G. H. Lammertink (a2) and Detlef Lohse (a1) (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed