Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-16T07:22:16.274Z Has data issue: false hasContentIssue false

Buckled elastic sheet as a vortex generator in dual channels

Published online by Cambridge University Press:  29 April 2024

Jingyu Cui*
Affiliation:
Zhejiang Key Laboratory of Multiphase Flow and Fluid Machinery, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
Zhaokun Wang
Affiliation:
Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, PR China
Feng Ren
Affiliation:
School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, PR China
Yang Liu
Affiliation:
Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, PR China
Weiwei Yan
Affiliation:
College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, PR China
Yuzhen Jin*
Affiliation:
Zhejiang Key Laboratory of Multiphase Flow and Fluid Machinery, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
*
Email addresses for correspondence: jingyucui@zstu.edu.cn, gracia1101@foxmail.com
Email addresses for correspondence: jingyucui@zstu.edu.cn, gracia1101@foxmail.com

Abstract

This study presents a dual-channel vortex generator (VG) that leverages the snap-through behaviour of flexible sheets. The VG outperforms a similar-sized rigid VG in generating vortices within dual-channel flows while minimizing pressure loss. Numerical simulations using the immersed boundary-lattice Boltzmann method analyse the dynamics and vortex generation performance of the sheet under various system parameters. Two distinct modes are identified for the elastic sheet: a sustained snap-through mode (SSTM) and a dormant mode (DM). The sheet's mode is predominantly influenced by its length ratio (L*), bending stiffness $(K_b^\ast )$ and flow strength, with the mass ratio having a minimal impact. The sheet exhibiting regular SSTM can effectively generate vortices in both channels and the vortex generation performance can be conveniently tuned by altering the sheet's initial buckling (i.e. L*). An increase in $K_b^\ast $ results in a higher critical Reynolds number (Rec) required for mode transition. An increase in L*, however, initially raises Rec and then lowers it, suggesting an optimal length ratio (approximately 0.7 for our considered system) for minimizing the Rec necessary to trigger SSTM. Furthermore, a disparity in the flow strength between channels is found to suppress the snap-through of the sheet; a greater disparity, however, is permissible to induce the SSTM of more compliant sheets. These findings underscore the potential of snap-through behaviour for enhanced flow manipulation in dual-channel systems.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akcayoglu, A. & Nazli, C. 2018 A comprehensive numerical study on thermohydraulic performance of fluid flow in triangular ducts with delta-winglet vortex generators. Heat Transfer Engng 39, 107119.10.1080/01457632.2017.1288046CrossRefGoogle Scholar
Arnouts, L.I.W., Massart, T.J., de Temmerman, N. & Berke, P.Z. 2019 Computational design of bistable deployable scissor structures: trends and challenges. J. Intl Assoc. Shell Spatial Struct. 60, 1934.Google Scholar
Awais, M. & Bhuiyan, A.A. 2018 Heat transfer enhancement using different types of vortex generators (VGs): a review on experimental and numerical activities. Therm. Sci. Engng Prog. 5, 524545.10.1016/j.tsep.2018.02.007CrossRefGoogle Scholar
Bharadwaj, P., Khondge, A.D. & Date, A. 2009 Heat transfer and pressure drop in a spirally grooved tube with twisted tape insert. Intl J. Heat Mass Transfer 52, 19381944.10.1016/j.ijheatmasstransfer.2008.08.038CrossRefGoogle Scholar
Bhattacharyya, S. 2020 Fluid flow and heat transfer in a heat exchanger channel with short-length twisted tape turbulator inserts. Iran. J. Sci. Technol. 44, 217227.Google Scholar
Bobbert, F.S.L., Janbaz, S. & Zadpoor, A.A. 2018 Towards deployable meta-implants. J. Mater. Chem. B 6, 34493455.10.1039/C8TB00576ACrossRefGoogle ScholarPubMed
Cai, G., Xue, L., Zhang, H. & Lin, J. 2017 A review on micromixers. Micromachines 8 (online).10.3390/mi8090274CrossRefGoogle ScholarPubMed
Cao, Y.T., Derakhshani, M., Fang, Y.H., Huang, G.L. & Cao, C.Y. 2021 Bistable structures for advanced functional systems. Adv. Funct. Mater. 31, 2106231.10.1002/adfm.202106231CrossRefGoogle Scholar
Chen, Y., Yang, J., Liu, Y. & Sung, H.J. 2020 Heat transfer enhancement in a poiseuille channel flow by using multiple wall-mounted flexible flags. Intl J. Heat Mass Transfer 163, 120447.10.1016/j.ijheatmasstransfer.2020.120447CrossRefGoogle Scholar
Chen, Y.J., Yu, Y.L., Peng, D. & Liu, Y.Z. 2019 Heat transfer enhancement of turbulent channel flow using dual self-oscillating inverted flags: staggered and side-by-side configurations. Intl J. Heat Mass Transfer 136, 851863.10.1016/j.ijheatmasstransfer.2019.03.048CrossRefGoogle Scholar
Connell, B.S. & Yue, D.K. 2007 Flapping dynamics of a flag in a uniform stream. J. Fluid Mech. 581, 3367.10.1017/S0022112007005307CrossRefGoogle Scholar
Cui, J., Lin, Z., Jin, Y. & Liu, Y. 2019 Numerical simulation of fiber conveyance in a confined channel by the immersed boundary-lattice Boltzmann method. Eur. J. Mech. (B/Fluids) 76, 422433.10.1016/j.euromechflu.2019.04.010CrossRefGoogle Scholar
Cui, J., Liu, Y. & Jin, Y. 2021 Impact of initial fiber states on different fiber dynamic patterns in the laminar channel flow. Intl J. Mech. Sci. 198, 106359.10.1016/j.ijmecsci.2021.106359CrossRefGoogle Scholar
Cui, J., Wang, Z., Liu, Y., Jin, Y. & Zhu, Z. 2022 a Three-dimensional simulation of lateral migration of fiber in a laminar channel flow. Intl J. Mech. Sci. 236, 107766.10.1016/j.ijmecsci.2022.107766CrossRefGoogle Scholar
Cui, J., Wu, T., Liu, Y., Fu, B.M., Jin, Y. & Zhu, Z. 2022 b A three-dimensional simulation of the dynamics of primary cilia in an oscillating flow. Appl. Math. Model. 108, 825839.10.1016/j.apm.2022.04.024CrossRefGoogle Scholar
Currier, T.M., Lheron, S. & Modarres-Sadeghi, Y. 2020 A bio-inspired robotic fish utilizes the snap-through buckling of its spine to generate accelerations of more than 20 g. Bioinspir. Biomim. 15, 055006.10.1088/1748-3190/ab9a14CrossRefGoogle Scholar
Dong, H.X., Chen, C.Y., Qiu, C., Yeow, C.H. & Yu, H.Y. 2022 GSG: a granary-shaped soft gripper with mechanical sensing via snap-through structure. IEEE Robot. Autom. Lett. 7, 94219428.10.1109/LRA.2022.3187819CrossRefGoogle Scholar
Gallegos, R.K.B. & Sharma, R.N. 2017 Flags as vortex generators for heat transfer enhancement: gaps and challenges. Renew. Sustain. Energy Rev. 76, 950962.10.1016/j.rser.2017.03.115CrossRefGoogle Scholar
Gomez, M., Moulton, D.E. & Vella, D. 2017 Passive control of viscous flow via elastic snap-through. Phys. Rev. Lett. 119, 144502.10.1103/PhysRevLett.119.144502CrossRefGoogle ScholarPubMed
Gorissen, B., Melancon, D., Vasios, N., Torbati, M. & Bertoldi, K. 2020 Inflatable soft jumper inspired by shell snapping. Sci. Robot. 5, eabb1967.10.1126/scirobotics.abb1967CrossRefGoogle ScholarPubMed
Han, J.C., Glicksman, L.R. & Rohsenow, W.M. 1978 An investigation of heat transfer and friction for rib-roughened surfaces. Intl J. Heat Mass Transfer 21, 11431156.10.1016/0017-9310(78)90113-8CrossRefGoogle Scholar
He, Y.L., Han, H., Tao, W.Q. & Zhang, Y.W. 2012 Numerical study of heat-transfer enhancement by punched winglet-type vortex generator arrays in fin-and-tube heat exchangers. Intl J. Heat Mass Transfer 55, 54495458.10.1016/j.ijheatmasstransfer.2012.04.059CrossRefGoogle Scholar
Hua, R.-N., Zhu, L. & Lu, X.-Y. 2013 Locomotion of a flapping flexible plate. Phys. Fluids 25, 121901.10.1063/1.4832857CrossRefGoogle Scholar
Huang, Q., Lai, J.C.S., Tian, F.-B. & Young, J. 2021 Transition to chaos in a two-sided collapsible channel flow. J. Fluid Mech. 926, A15.10.1017/jfm.2021.710CrossRefGoogle Scholar
Huang, W.-X., Shin, S.J. & Sung, H.J. 2007 Simulation of flexible filaments in a uniform flow by the immersed boundary method. J. Comput. Phys. 226, 22062228.10.1016/j.jcp.2007.07.002CrossRefGoogle Scholar
Hussain, A.A., Freegah, B., Khalaf, B.S. & Towsyfyan, H. 2019 Numerical investigation of heat transfer enhancement in plate-fin heat sinks: effect of flow direction and fillet profile. Case Stud. Therm. Engng 13, 100388.Google Scholar
Jeong, C.H., Kim, H.R., Ha, M.Y., Son, S.W., Lee, J.S. & Kim, P.Y. 2014 Numerical investigation of thermal enhancement of plate fin type heat exchanger with creases and holes in construction machinery. Appl. Therm. Engng 62, 529544.10.1016/j.applthermaleng.2013.09.044CrossRefGoogle Scholar
Jiao, S. & Liu, M. 2021 Snap-through in graphene nanochannels: with application to fluidic control. ACS Appl. Mater. Interfaces 13, 11581168.10.1021/acsami.0c16468CrossRefGoogle ScholarPubMed
Kang, S.K. 2010 Immersed boundary methods in the lattice Boltzmann equation for flow simulation. Doctor Thesis, Texas A&M University.Google Scholar
Khatavkar, V.V., Anderson, P.D., den Toonder, J.M.J. & Meijer, H.E.H. 2007 Active micromixer based on artificial cilia. Phys. Fluids 19, 083605.10.1063/1.2762206CrossRefGoogle Scholar
Kim, B.S., Kwak, B.S., Shin, S., Lee, S., Kim, K.M., Jung, H.-I. & Cho, H.H. 2011 Optimization of microscale vortex generators in a microchannel using advanced response surface method. Intl J. Heat Mass Transfer 54, 118125.10.1016/j.ijheatmasstransfer.2010.09.061CrossRefGoogle Scholar
Kim, H., Lahooti, M., Kim, J. & Kim, D. 2021 a Flow-induced periodic snap-through dynamics. J. Fluid Mech. 913, A52.10.1017/jfm.2021.57CrossRefGoogle Scholar
Kim, H., Zhou, Q., Kim, D. & Oh, I.-K. 2020 Flow-induced snap-through triboelectric nanogenerator. Nano Energy 68, 104379.10.1016/j.nanoen.2019.104379CrossRefGoogle Scholar
Kim, J., Kim, H. & Kim, D. 2021 b Snap-through oscillations of tandem elastic sheets in uniform flow. J. Fluids Struct. 103, 103283.10.1016/j.jfluidstructs.2021.103283CrossRefGoogle Scholar
Lambert, R.A. & Rangel, R.H. 2010 The role of elastic flap deformation on fluid mixing in a microchannel. Phys. Fluids 22, 052003.10.1063/1.3410268CrossRefGoogle Scholar
Lee, C.-Y., Wang, W.-T., Liu, C.-C. & Fu, L.-M. 2016 Passive mixers in microfluidic systems: a review. Chem. Engng J. 288, 146160.10.1016/j.cej.2015.10.122CrossRefGoogle Scholar
Lee, J.B., Park, S.G., Kim, B., Ryu, J. & Sung, H.J. 2017 Heat transfer enhancement by flexible flags clamped vertically in a Poiseuille channel flow. Intl J. Heat Mass Transfer 107, 391402.10.1016/j.ijheatmasstransfer.2016.11.057CrossRefGoogle Scholar
Lee, J.B., Park, S.G. & Sung, H.J. 2018 Heat transfer enhancement by asymmetrically clamped flexible flags in a channel flow. Intl J. Heat Mass Transfer 116, 10031015.10.1016/j.ijheatmasstransfer.2017.09.094CrossRefGoogle Scholar
Liao, W. & Jing, D. 2023 a Experimental study on fluid mixing and pressure drop of mini-mixer with flexible vortex generator. Intl Commun. Heat Mass Transfer 142, 106615.10.1016/j.icheatmasstransfer.2023.106615CrossRefGoogle Scholar
Liao, W. & Jing, D.L. 2023 b Experimental study on fluid mixing and pressure drop of mini-mixer with flexible vortex generator. Intl Commun. Heat Mass Transfer 142, 106615.10.1016/j.icheatmasstransfer.2023.106615CrossRefGoogle Scholar
Luo, X.Y., Cai, Z.X., Li, W.G. & Pedley, T.J. 2008 The cascade structure of linear instability in collapsible channel flows. J. Fluid Mech. 600, 4576.10.1017/S0022112008000293CrossRefGoogle Scholar
Mahmoodi-Jezeh, S.V. & Wang, B.C. 2020 Direct numerical simulation of turbulent flow through a ribbed square duct. J. Fluid Mech. 900, A18.10.1017/jfm.2020.452CrossRefGoogle Scholar
Mao, Q., Liu, Y. & Sung, H.J. 2023 Snap-through dynamics of a buckled flexible filament in a uniform flow. J. Fluid Mech. 969, A33.10.1017/jfm.2023.596CrossRefGoogle Scholar
Moore, A.L. & Shi, L. 2014 Emerging challenges and materials for thermal management of electronics. Mater. Today 17, 163174.10.1016/j.mattod.2014.04.003CrossRefGoogle Scholar
Niu, X.D., Shu, C., Chew, Y.T. & Peng, Y. 2006 A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating incompressible viscous flows. Phys. Lett. A 354, 173182.10.1016/j.physleta.2006.01.060CrossRefGoogle Scholar
Park, S.G., Kim, B., Chang, C.B., Ryu, J. & Sung, H.J. 2016 Enhancement of heat transfer by a self-oscillating inverted flag in a Poiseuille channel flow. Intl J. Heat Mass Transfer 96, 362370.10.1016/j.ijheatmasstransfer.2016.01.043CrossRefGoogle Scholar
Peskin, C. 2002 The immersed boundary method. Acta Numerica 11, 479517.10.1017/S0962492902000077CrossRefGoogle Scholar
Premnath, K. & Abraham, J. 2007 Three-dimensional multi-relaxation time (MRT) lattice-Boltzmann models for multiphase flow. J. Comput. Phys. 224, 539559.10.1016/j.jcp.2006.10.023CrossRefGoogle Scholar
Promvonge, P. & Thianpong, C. 2008 Thermal performance assessment of turbulent channel flows over different shaped ribs. Intl Commun. Heat Mass Transfer 35, 13271334.10.1016/j.icheatmasstransfer.2008.07.016CrossRefGoogle Scholar
Qin, W.Y., Deng, W.Z., Pan, J.N., Zhou, Z.Y., Du, W.F. & Zhu, P. 2019 Harvesting wind energy with bi-stable snap-through excited by vortex-induced vibration and galloping. Energy 189, 116237.10.1016/j.energy.2019.116237CrossRefGoogle Scholar
Shoele, K. & Mittal, R. 2014 Computational study of flow-induced vibration of a reed in a channel and effect on convective heat transfer. Phys. Fluids 26, 127103.10.1063/1.4903793CrossRefGoogle Scholar
Singh, G. & Lakkaraju, R. 2019 Wall-mounted flexible plates in a two-dimensional channel trigger early flow instabilities. Phys. Rev. E 100, 023109.10.1103/PhysRevE.100.023109CrossRefGoogle Scholar
Skullong, S., Promthaisong, P., Promvonge, P., Thianpong, C. & Pimsarn, M. 2018 Thermal performance in solar air heater with perforated-winglet-type vortex generator. Solar Energy 170, 11011117.10.1016/j.solener.2018.05.093CrossRefGoogle Scholar
Tanda, G. 2011 Performance of solar air heater ducts with different types of ribs on the absorber plate. Energy 36, 66516660.10.1016/j.energy.2011.08.043CrossRefGoogle Scholar
Wang, C. & Tang, H. 2018 Influence of complex driving motion on propulsion performance of a heaving flexible foil. Bioinspir. Biomim. 14, 016011.10.1088/1748-3190/aaf17aCrossRefGoogle ScholarPubMed
Wang, C. & Tang, H. 2019 On the aeroelastic energy transfer from a Lamb dipole to a flexible cantilever. J. Fluids Struct. 86, 170184.10.1016/j.jfluidstructs.2019.02.006CrossRefGoogle Scholar
Wang, C.L., Tang, H., Duan, F. & Yu, S.C.M. 2016 a Control of wakes and vortex-induced vibrations of a single circular cylinder using synthetic jets. J. Fluids Struct. 60, 160179.10.1016/j.jfluidstructs.2015.11.003CrossRefGoogle Scholar
Wang, C.L., Tang, H., Yu, S.C.M. & Duan, F. 2016 b Active control of vortex-induced vibrations of a circular cylinder using windward-suction-leeward-blowing actuation. Phys. Fluids 28, 14.10.1063/1.4947246CrossRefGoogle Scholar
Wang, C.L., Tang, H., Yu, S.C.M. & Duan, F. 2017 a Control of vortex-induced vibration using a pair of synthetic jets: influence of active lock-on. Phys. Fluids 29, 11.10.1063/1.4996231CrossRefGoogle Scholar
Wang, C.L., Tang, H., Yu, S.C.M. & Duan, F. 2017 b Lock-on of vortex shedding to a pair of synthetic jets with phase difference. Phys. Rev. Fluids 2, 26.10.1103/PhysRevFluids.2.104701CrossRefGoogle Scholar
Wang, Y.S., Zhou, Z.Y., Qin, W.Y. & Zhu, P. 2021 Harvesting wind energy with a bi-stable configuration integrating vortex-induced vibration and galloping. J. Phys. D-Appl. Phys. 54, 285501.10.1088/1361-6463/abf809CrossRefGoogle Scholar
Wang, Z., Zhao, F., Fu, Y., Deng, F., Zeng, L. & Cui, J. 2023 Towards energy harvesting through flow-induced snap-through oscillations. Intl J. Mech. Sci. 254, 108428.10.1016/j.ijmecsci.2023.108428CrossRefGoogle Scholar
Webb, R.L., Eckert, E.R.G. & Goldstein, R.J. 1971 Heat transfer and friction in tubes with repeated-rib roughness. Intl J. Heat Mass Transfer 14, 601617.10.1016/0017-9310(71)90009-3CrossRefGoogle Scholar
Wiens, J.K. & Stockie, J.M. 2015 Simulating flexible fiber suspensions using a scalable immersed boundary algorithm. Comput. Meth. Appl. Mech. Engng 290, 118.10.1016/j.cma.2015.02.026CrossRefGoogle Scholar
Wu, J.F., Liu, P., Yu, M.J., Liu, Z.C. & Liu, W. 2022 b Thermo-hydraulic performance and exergy analysis of a fin-and-tube heat exchanger with sinusoidal wavy winglet type vortex generators. Intl J. Therm. Sci. 172, 107274.10.1016/j.ijthermalsci.2021.107274CrossRefGoogle Scholar
Wu, S., Baker, G.L., Yin, J. & Zhu, Y. 2022 a Fast thermal actuators for soft robotics. Soft Robot. 9, 10311039.10.1089/soro.2021.0080CrossRefGoogle ScholarPubMed
Yang, X., Zhang, X., Li, Z. & He, G.-W. 2009 A smoothing technique for discrete delta functions with application to immersed boundary method in moving boundary simulations. J. Comput. Phys. 228, 78217836.10.1016/j.jcp.2009.07.023CrossRefGoogle Scholar
Yeow, B.S., et al. 2021 Origami-inspired snap-through bistability in parallel and curved mechanisms through the inflection of degree four vertexes. In IEEE International Conference on Robotics and Automation (ICRA), May 30–June 05 2021 Xian, People's Republic of China, pp. 10863–10869.Google Scholar
Yu, Y.L., Liu, Y.Z. & Chen, Y.J. 2018 Vortex dynamics and heat transfer behind self-oscillating inverted flags of various lengths in channel flow. Phys. Fluids 30, 045104.10.1063/1.5022723CrossRefGoogle Scholar
Yuan, H.-Z., Niu, X.-D., Shu, S., Li, M. & Yamaguchi, H. 2014 A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating a flexible filament in an incompressible flow. Comput. Maths Applics. 67, 10391056.10.1016/j.camwa.2014.01.006CrossRefGoogle Scholar
Zhang, X.J., Oseyemi, A.E., Ma, K. & Yu, S.Y. 2022 Entirely soft valve leveraging snap-through instability for passive flow control. Sensors Actuators B-Chem. 367, 132035.10.1016/j.snb.2022.132035CrossRefGoogle Scholar
Zhang, Z., Wang, X. & Yan, Y. 2021 A review of the state-of-the-art in electronic cooling. e-Prime – Adv. Electr. Engng Electron. Energy 1, 100009.10.1016/j.prime.2021.100009CrossRefGoogle Scholar
Zhao, J., Huang, S.B., Gong, L. & Huang, Z.Q. 2016 Numerical study and optimizing on micro square pin-fin heat sink for electronic cooling. Appl. Therm. Engng 93, 13471359.10.1016/j.applthermaleng.2015.08.105CrossRefGoogle Scholar
Zhou, G.B. & Feng, Z.Z. 2014 Experimental investigations of heat transfer enhancement by plane and curved winglet type vortex generators with punched holes. Intl J. Therm. Sci. 78, 2635.10.1016/j.ijthermalsci.2013.11.010CrossRefGoogle Scholar
Zhou, Z., Qin, W., Zhu, P., Du, W., Deng, W. & Pan, J. 2019 Scavenging wind energy by a dynamic-stable flutter energy harvester with rectangular wing. Appl. Phys. Lett. 114, 243902.10.1063/1.5100598CrossRefGoogle Scholar
Supplementary material: File

Cui et al. supplementary movie 1

Sheet motion in a typical sustained snap-through mode (SSTM)
Download Cui et al. supplementary movie 1(File)
File 695.9 KB
Supplementary material: File

Cui et al. supplementary movie 2

Sheet motion in a typical dormant mode (DM)
Download Cui et al. supplementary movie 2(File)
File 659.1 KB
Supplementary material: File

Cui et al. supplementary movie 3

Vortex generation in a typical SSTM, the vortices are identified by the z-vorticities
Download Cui et al. supplementary movie 3(File)
File 1.2 MB