Skip to main content
×
Home
    • Aa
    • Aa

Can swell increase the number of freak waves in a wind sea?

  • ODIN GRAMSTAD (a1) and KARSTEN TRULSEN (a1)
Abstract

The effect of a swell on the statistical distribution of a directional short-wave field is investigated. Starting from Zakharov's spectral formulation, we derive a new modified nonlinear Schrödinger equation appropriate for the nonlinear evolution of a narrow-banded spectrum of short waves influenced by a swell. The swell-modified equation is solved analytically to yield an extended version of the result of Longuet-Higgins & Stewart (J. Fluid Mech., vol. 8, no. 4, 1960, pp. 565–583) for the modulation of a short wave riding on a longer wave. Numerical Monte Carlo simulations of the long-term evolution of a spectrum of short waves in the presence of a monochromatic swell are employed to extract statistical distributions of freak waves among the short waves. We find evidence that a realistic short-crested wind sea can on average experience a small increase in freak wave probability because of a swell provided the swell is not orthogonal to the wind waves. For orthogonal swell and wind waves we find evidence that there is almost no significant change in the probability of freak waves in the wind sea. If the short waves are unrealistically long crested, such that the Benjamin–Feir index serves as indicator for freak waves (Gramstad & Trulsen, J. Fluid Mech., vol. 582, 2007, pp. 463–472), it appears that the swell has much smaller relative influence on the probability of freak waves than in the short-crested case.

Copyright
Corresponding author
Email address for correspondence: karstent@math.uio.no
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

N. Akhmediev , A. Ankiewicz & M. Taki 2009 Waves that appear from nowhere and disappear without a trace. Phys. Lett. A 373 (6), 675678.

I. E. Alber 1978 The effects of randomness on the stability of two-dimensional surface wavetrains. Proc. R. Soc. Lond. A 363 (1715), 525546.

A. D. D. Craik 1988 Interaction of a short-wave field with a dominant long-wave in deep-water – derivation from Zakharov's spectral formulation. J. Austral. Math. Soc. B 29, 430439.

K. Dysthe , H. E. Krogstad & P. Müller 2008 Oceanic rogue waves. Annu. Rev. Fluid Mech. 40 (1), 287310.

K. B. Dysthe & K. Trulsen 1999 Note on breather type solutions of the NLS as models for freak-waves. Phys. Scripta T82, 4852.

D. R. Fuhrman , P. A. Madsen & H. B. Bingham 2006 Numerical simulation of lowest-order short-crested wave instabilities. J. Fluid Mech. 563, 415441.

O. Gramstad & K. Trulsen 2007 Influence of crest and group length on the occurrence of freak waves. J. Fluid Mech. 582, 463472.

R. Grimshaw 1988 The modulation of short gravity-waves by long waves or currents. J. Austral. Math. Soc. B 29, 410429.

F. S. Henyey , D. B. Creamer , K. B. Dysthe , R. L. Schult & J. A. Wright 1988 The energy and action of small waves riding on large waves. J. Fluid Mech. 189, 443462.

P. A. E. M. Janssen 2003 Nonlinear four-wave interactions and freak waves. J. Phys. Oceanogr. 33 (4), 863884.

V. P. Krasitskii 1994 On reduced equations in the Hamiltonian theory of weakly nonlinear surface-waves. J. Fluid Mech. 272, 120.

A. Lechuga 2006 Were freak waves involved in the sinking of the tanker ‘Prestige’? Nat. Haz. Earth Sys. 6 (6), 973978.

E. Lo & C. C. Mei 1985 A numerical study of water-wave modulation based on a higher-order nonlinear Schrödinger-equation. J. Fluid Mech. 150, 395416.

E. Y. Lo & C. C. Mei 1987 Slow evolution of nonlinear deep-water waves in two horizontal directions – a numerical study. Wave Mot. 9 (3), 245259.

M. S. Longuet-Higgins 1987 The propagation of short surface-waves on longer gravity-waves. J. Fluid Mech. 177, 293306.

M. S. Longuet-Higgins & R. W. Stewart 1960 Changes in the form of short gravity waves on long waves and tidal currents. J. Fluid Mech. 8 (4), 565583.

D. Masson 1993 On the nonlinear coupling between swell and wind waves. J. Phys. Oceanogr. 23 (6), 12491258.

M. Naciri & C. C. Mei 1992 Evolution of a short surface-wave on a very long surface-wave of finite-amplitude. J. Fluid Mech. 235, 415452.

M. Naciri & C. C. Mei 1993 Evolution of short gravity-waves on long gravity-waves. Phys. Fluids A 5 (8), 18691878.

M. Naciri & C. C. Mei 1994 Two-dimensional modulation and instability of a short wave riding on a finite-amplitude long wave. Wave Mot. 20 (3), 211232.

M. Onorato , L. Cavaleri , S. Fouques , O. Gramstad , P. A. E. M. Janssen , J. Monbaliu , A. R. Osborne , C. Pakozdi , M. Serio , C. T. Stansberg , A. Toffoli & K. Trulsen 2009 a Statistical properties of mechanically generated surface gravity waves: a laboratory experiment in a three-dimensional wave basin. J. Fluid Mech. 627, 235257.

M. Onorato , A. R. Osborne & M. Serio 2002 Extreme wave events in directional, random oceanic sea states. Phys. Fluids 14 (4), L25L28.

M. Onorato , A. R. Osborne & M. Serio 2006 Modulational instability in crossing sea states: a possible mechanism for the formation of freak waves. Phys. Rev. Lett. 96 (1), 014503.

M. Onorato , A. R. Osborne , M. Serio & S. Bertone 2001 Freak waves in random oceanic sea states. Phys. Rev. Lett. 86 (25), 58315834.

M. Onorato , A. R. Osborne , M. Serio , L. Cavaleri , Brandini, C. & C. T. Stansberg 2004 Observation of strongly non-Gaussian statistics for random sea surface gravity waves in wave flume experiments. Phys. Rev. E 70 (6), 067302.

M. Onorato , T. Waseda , A. Toffoli , L. Cavaleri , O. Gramstad , P. A. E. M. Janssen , T. Kinoshita , J. Monbaliu , N. Mori , A. R. Osborne , M. Serio , C. T. Stansberg , H. Tamura & K. Trulsen 2009 bStatistical properties of directional ocean waves: the role of the modulational instability in the formation of extreme events. Phys. Rev. Lett. 102 (11), 114502.

A. Regev , Y. Agnon , M. Stiassnie & O. Gramstad 2008 Sea–swell interaction as a mechanism for the generation of freak waves. Phys. Fluids 20 (11), 112102.

P. K. Shukla , I. Kourakis , B. Eliasson , M. Marklund & L. Stenflo 2006 Instability and evolution of nonlinearly interacting water waves. Phys. Rev. Lett. 97 (9), 094501.

H. Socquet-Juglard , K. Dysthe , K. Trulsen , H. E. Krogstad & J. D. Liu 2005 Probability distributions of surface gravity waves during spectral changes. J. Fluid Mech. 542, 195216.

M. Stiassnie 1984 Note on the modified nonlinear Schrödinger-equation for deep-water waves. Wave Mot. 6 (4), 431433.

H. Tamura , T. Waseda & Y. Miyazawa 2009 Freakish sea state and swell–windsea coupling: numerical study of the Suwa-Maru incident. Geophys. Res. Lett. 36, L01607.

A. Toffoli , J. M. Lefevre , Bitner-Gregersen, E. & J. Monbaliu 2005 Towards the identification of warning criteria: analysis of a ship accident database. Appl. Ocean Res. 27 (6), 281291.

K. Trulsen & K. B. Dysthe 1996 A modified nonlinear Schrödinger equation for broader bandwidth gravity waves on deep water. Wave Mot. 24 (3), 281289.

J. A. C. Weideman & B. M. Herbst 1986 Split-step methods for the solution of the nonlinear Schrödinger-equation. SIAM J. Numer. Anal. 23, 485507.

V. E. Zakharov 1968 Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9, 190194.

J. Zhang & W. K. Melville 1990 Evolution of weakly nonlinear short waves riding on long gravity-waves. J. Fluid Mech. 214, 321346.

J. Zhang & W. K. Melville 1992 On the stability of weakly nonlinear short waves on finite-amplitude long gravity-waves. J. Fluid Mech. 243, 5172.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 26 *
Loading metrics...

Abstract views

Total abstract views: 72 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd September 2017. This data will be updated every 24 hours.