Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 12
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    GRAMSTAD, ODIN and TRULSEN, KARSTEN 2011. Hamiltonian form of the modified nonlinear Schrödinger equation for gravity waves on arbitrary depth. Journal of Fluid Mechanics, Vol. 670, p. 404.


    Kundu, Sumana Debsarma, S. and Das, K. P. 2013. Modulational instability in crossing sea states over finite depth water. Physics of Fluids, Vol. 25, Issue. 6, p. 066605.


    Adcock, Thomas A A and Taylor, Paul H 2014. The physics of anomalous (‘rogue’) ocean waves. Reports on Progress in Physics, Vol. 77, Issue. 10, p. 105901.


    Sabatino, Alessandro D. and Serio, Marina 2015. Experimental investigation on statistical properties of wave heights and crests in crossing sea conditions. Ocean Dynamics, Vol. 65, Issue. 5, p. 707.


    Nieto Borge, J.C. Reichert, K. and Hessner, K. 2013. Detection of spatio-temporal wave grouping properties by using temporal sequences of X-band radar images of the sea surface. Ocean Modelling, Vol. 61, p. 21.


    Gramstad, Odin and Trulsen, Karsten 2011. Fourth-order coupled nonlinear Schrödinger equations for gravity waves on deep water. Physics of Fluids, Vol. 23, Issue. 6, p. 062102.


    Petrova, P.G. and Guedes Soares, C. 2015. Validation of the Boccotti's generalized model for large nonlinear wave heights from laboratory mixed sea states. Applied Ocean Research, Vol. 53, p. 297.


    Trulsen, Karsten Nieto Borge, José Carlos Gramstad, Odin Aouf, Lotfi and Lefèvre, Jean-Michel 2015. Crossing sea state and rogue wave probability during the Prestige accident. Journal of Geophysical Research: Oceans, Vol. 120, Issue. 10, p. 7113.


    Chabchoub, Amin Onorato, Miguel and Akhmediev, Nail 2016. Rogue and Shock Waves in Nonlinear Dispersive Media.


    Antić, Dragan Danković, Bratislav Nikolić, Saša Milojković, Marko and Jovanović, Zoran 2012. Approximation based on orthogonal and almost orthogonal functions. Journal of the Franklin Institute, Vol. 349, Issue. 1, p. 323.


    MORI, Nobuhito TANAKA, Ryo NAKAJO, Sota YASUDA, Tomohiro and MASE, Hajime 2011. Effects of Swell on the Growth of Wind Waves and Extreme Wave Occurrence. Journal of Japan Society of Civil Engineers, Ser. B2 (Coastal Engineering), Vol. 67, Issue. 2, p. I_146.


    TOFFOLI, A. GRAMSTAD, O. TRULSEN, K. MONBALIU, J. BITNER-GREGERSEN, E. and ONORATO, M. 2010. Evolution of weakly nonlinear random directional waves: laboratory experiments and numerical simulations. Journal of Fluid Mechanics, Vol. 664, p. 313.


    ×
  • Journal of Fluid Mechanics, Volume 650
  • May 2010, pp. 57-79

Can swell increase the number of freak waves in a wind sea?

  • ODIN GRAMSTAD (a1) and KARSTEN TRULSEN (a1)
  • DOI: http://dx.doi.org/10.1017/S0022112009993491
  • Published online: 19 March 2010
Abstract

The effect of a swell on the statistical distribution of a directional short-wave field is investigated. Starting from Zakharov's spectral formulation, we derive a new modified nonlinear Schrödinger equation appropriate for the nonlinear evolution of a narrow-banded spectrum of short waves influenced by a swell. The swell-modified equation is solved analytically to yield an extended version of the result of Longuet-Higgins & Stewart (J. Fluid Mech., vol. 8, no. 4, 1960, pp. 565–583) for the modulation of a short wave riding on a longer wave. Numerical Monte Carlo simulations of the long-term evolution of a spectrum of short waves in the presence of a monochromatic swell are employed to extract statistical distributions of freak waves among the short waves. We find evidence that a realistic short-crested wind sea can on average experience a small increase in freak wave probability because of a swell provided the swell is not orthogonal to the wind waves. For orthogonal swell and wind waves we find evidence that there is almost no significant change in the probability of freak waves in the wind sea. If the short waves are unrealistically long crested, such that the Benjamin–Feir index serves as indicator for freak waves (Gramstad & Trulsen, J. Fluid Mech., vol. 582, 2007, pp. 463–472), it appears that the swell has much smaller relative influence on the probability of freak waves than in the short-crested case.

Copyright
Corresponding author
Email address for correspondence: karstent@math.uio.no
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

N. Akhmediev , A. Ankiewicz & M. Taki 2009 Waves that appear from nowhere and disappear without a trace. Phys. Lett. A 373 (6), 675678.

I. E. Alber 1978 The effects of randomness on the stability of two-dimensional surface wavetrains. Proc. R. Soc. Lond. A 363 (1715), 525546.


K. Dysthe , H. E. Krogstad & P. Müller 2008 Oceanic rogue waves. Annu. Rev. Fluid Mech. 40 (1), 287310.

K. B. Dysthe & K. Trulsen 1999 Note on breather type solutions of the NLS as models for freak-waves. Phys. Scripta T82, 4852.





P. A. E. M. Janssen 2003 Nonlinear four-wave interactions and freak waves. J. Phys. Oceanogr. 33 (4), 863884.


A. Lechuga 2006 Were freak waves involved in the sinking of the tanker ‘Prestige’? Nat. Haz. Earth Sys. 6 (6), 973978.


E. Y. Lo & C. C. Mei 1987 Slow evolution of nonlinear deep-water waves in two horizontal directions – a numerical study. Wave Mot. 9 (3), 245259.



D. Masson 1993 On the nonlinear coupling between swell and wind waves. J. Phys. Oceanogr. 23 (6), 12491258.


M. Naciri & C. C. Mei 1993 Evolution of short gravity-waves on long gravity-waves. Phys. Fluids A 5 (8), 18691878.

M. Naciri & C. C. Mei 1994 Two-dimensional modulation and instability of a short wave riding on a finite-amplitude long wave. Wave Mot. 20 (3), 211232.


M. Onorato , A. R. Osborne & M. Serio 2002 Extreme wave events in directional, random oceanic sea states. Phys. Fluids 14 (4), L25L28.

M. Onorato , A. R. Osborne & M. Serio 2006 Modulational instability in crossing sea states: a possible mechanism for the formation of freak waves. Phys. Rev. Lett. 96 (1), 014503.

M. Onorato , A. R. Osborne , M. Serio & S. Bertone 2001 Freak waves in random oceanic sea states. Phys. Rev. Lett. 86 (25), 58315834.

M. Onorato , A. R. Osborne , M. Serio , L. Cavaleri , Brandini, C. & C. T. Stansberg 2004 Observation of strongly non-Gaussian statistics for random sea surface gravity waves in wave flume experiments. Phys. Rev. E 70 (6), 067302.

M. Onorato , T. Waseda , A. Toffoli , L. Cavaleri , O. Gramstad , P. A. E. M. Janssen , T. Kinoshita , J. Monbaliu , N. Mori , A. R. Osborne , M. Serio , C. T. Stansberg , H. Tamura & K. Trulsen 2009 bStatistical properties of directional ocean waves: the role of the modulational instability in the formation of extreme events. Phys. Rev. Lett. 102 (11), 114502.

A. Regev , Y. Agnon , M. Stiassnie & O. Gramstad 2008 Sea–swell interaction as a mechanism for the generation of freak waves. Phys. Fluids 20 (11), 112102.

P. K. Shukla , I. Kourakis , B. Eliasson , M. Marklund & L. Stenflo 2006 Instability and evolution of nonlinearly interacting water waves. Phys. Rev. Lett. 97 (9), 094501.


M. Stiassnie 1984 Note on the modified nonlinear Schrödinger-equation for deep-water waves. Wave Mot. 6 (4), 431433.

H. Tamura , T. Waseda & Y. Miyazawa 2009 Freakish sea state and swell–windsea coupling: numerical study of the Suwa-Maru incident. Geophys. Res. Lett. 36, L01607.

A. Toffoli , J. M. Lefevre , Bitner-Gregersen, E. & J. Monbaliu 2005 Towards the identification of warning criteria: analysis of a ship accident database. Appl. Ocean Res. 27 (6), 281291.

K. Trulsen & K. B. Dysthe 1996 A modified nonlinear Schrödinger equation for broader bandwidth gravity waves on deep water. Wave Mot. 24 (3), 281289.

J. A. C. Weideman & B. M. Herbst 1986 Split-step methods for the solution of the nonlinear Schrödinger-equation. SIAM J. Numer. Anal. 23, 485507.

V. E. Zakharov 1968 Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9, 190194.



Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax