Skip to main content

Capillary interactions between dynamically forced particles adsorbed at a planar interface and on a bubble

  • M. De Corato (a1) and V. Garbin (a1)

We investigate the dynamic interfacial deformation induced by micrometric particles exerting a periodic force on a planar interface or on a bubble, and the resulting lateral capillary interactions. Assuming that the deformation of the interface is small, neglecting the effect of viscosity and assuming point particles, we derive analytical formulas for the dynamic deformation of the interface. For the case of a planar interface the dynamic point force simply generates capillary waves, while for the case of a bubble it excites shape oscillations, with a dominant deformation mode that depends on the bubble radius for a given forcing frequency. We evaluate the lateral capillary force acting between two particles, by superimposing the deformations induced by two point forces. We find that the lateral capillary forces experienced by dynamically forced particles are non-monotonic and can be repulsive. The results are applicable to micrometric particles driven by different dynamic forcing mechanisms such as magnetic, electric or acoustic fields.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Capillary interactions between dynamically forced particles adsorbed at a planar interface and on a bubble
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Capillary interactions between dynamically forced particles adsorbed at a planar interface and on a bubble
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Capillary interactions between dynamically forced particles adsorbed at a planar interface and on a bubble
      Available formats
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
Email address for correspondence:
Hide All
Abramowitz, M. & Stegun, I. A. 1964 Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables. Courier Corporation.
Ashkin, A. 1980 Applications of laser radiation pressure. Science 210 (4474), 10811088.
Baresch, D., Thomas, J.-L. & Marchiano, R. 2016 Observation of a single-beam gradient force acoustical trap for elastic particles: acoustical tweezers. Phys. Rev. Lett. 116 (2), 024301.
Belkin, M., Snezhko, A., Aranson, I. S. & Kwok, W.-K. 2007 Driven magnetic particles on a fluid surface: pattern assisted surface flows. Phys. Rev. Lett. 99 (15), 158301.
Binks, B. P. 2002 Particles as surfactants – similarities and differences. Curr. Opin. Colloid Interface Sci. 7 (1), 2141.
Binks, B. P. & Horozov, T. S. 2006 Colloidal Particles at Liquid Interfaces. Cambridge University Press.
Bleibel, J., Dietrich, S., Domínguez, A. & Oettel, M. 2011 Shock waves in capillary collapse of colloids: a model system for two-dimensional screened Newtonian gravity. Phys. Rev. Lett. 107 (12), 128302.
Boniello, G., Stocco, A., Gross, M., In, M., Blanc, C. & Nobili, M. 2016 Translational viscous drags of an ellipsoid straddling an interface between two fluids. Phys. Rev. E 94 (1), 012602.
Botto, L., Lewandowski, E. P., Cavallaro, M. & Stebe, K. J. 2012 Capillary interactions between anisotropic particles. Soft Matt. 8 (39), 99579971.
Chan, D. Y. C., Henry, J. D. & White, L. R. 1981 The interaction of colloidal particles collected at fluid interfaces. J. Colloid Interface Sci. 79 (2), 410418.
Chepelianskii, A. D., Chevy, F. & Raphaël, E. 2008 Capillary-gravity waves generated by a slow moving object. Phys. Rev. Lett. 100 (7), 074504.
Dani, A., Keiser, G., Yeganeh, M. & Maldarelli, C. 2015 Hydrodynamics of particles at an oil–water interface. Langmuir 31 (49), 1329013302.
Danov, K., Aust, R., Durst, F. & Lange, U. 1995 Influence of the surface viscosity on the hydrodynamic resistance and surface diffusivity of a large Brownian particle. J. Colloid Interface Sci. 175 (1), 3645.
Danov, K. D., Dimova, R. & Pouligny, B. 2000 Viscous drag of a solid sphere straddling a spherical or flat surface. Phys. Fluids 12 (11), 27112722.
Danov, K. D. & Kralchevsky, P. A. 2010 Capillary forces between particles at a liquid interface: general theoretical approach and interactions between capillary multipoles. Adv. Colloid Interface Sci. 154 (1), 91103.
Danov, K. D., Kralchevsky, P. A., Naydenov, B. N. & Brenn, G. 2005 Interactions between particles with an undulated contact line at a fluid interface: capillary multipoles of arbitrary order. J. Colloid Interface Sci. 287 (1), 121134.
Davies, G. B., Krüger, T., Coveney, P. V., Harting, J. & Bresme, F. 2014 Assembling ellipsoidal particles at fluid interfaces using switchable dipolar capillary interactions. Adv. Mater. 26 (39), 67156719.
Davis, A. M. J. 1976 On the short surface waves due to an oscillating, partially immersed body. J. Fluid Mech. 75 (4), 791807.
Davis, A. M. J. 1977 High frequency limiting virtual-mass coefficients of heaving half-immersed spheres. J. Fluid Mech. 80 (2), 305319.
Domínguez, A., Oettel, M. & Dietrich, S. 2008 Force balance of particles trapped at fluid interfaces. J. Chem. Phys. 128 (11), 114904.
Dörr, A. & Hardt, S. 2015 Driven particles at fluid interfaces acting as capillary dipoles. J. Fluid Mech. 770, 526.
Dörr, A., Hardt, S., Masoud, H. & Stone, H. A. 2016 Drag and diffusion coefficients of a spherical particle attached to a fluid–fluid interface. J. Fluid Mech. 790, 607618.
Eddi, A., Decelle, A., Fort, E. & Couder, Y. 2009 Archimedean lattices in the bound states of wave interacting particles. Europhys. Lett. 87 (5), 56002.
Falkovich, G., Weinberg, A., Denissenko, P. & Lukaschuk, S. 2005 Surface tension: floater clustering in a standing wave. Nature 435 (7045), 10451046.
Fischer, T. M., Dhar, P. & Heinig, P. 2006 The viscous drag of spheres and filaments moving in membranes or monolayers. J. Fluid Mech. 558, 451475.
Fuller, G. G. & Vermant, J. 2012 Complex fluid–fluid interfaces: rheology and structure. Annu. Rev. Chem. Biomol. Engng 3, 519543.
Grzybowski, B. A., Stone, H. A. & Whitesides, G. M. 2000 Dynamic self-assembly of magnetized, millimetre-sized objects rotating at a liquid–air interface. Nature 405 (6790), 1033.
Guzowski, J., Tasinkevych, M. & Dietrich, S. 2011a Capillary interactions in Pickering emulsions. Phys. Rev. E 84 (3), 031401.
Guzowski, J., Tasinkevych, M. & Dietrich, S. 2011b Effective interactions and equilibrium configurations of colloidal particles on a sessile droplet. Soft Matt. 7 (9), 41894197.
Havelock, T. H. 1919 Wave resistance: some cases of three-dimensional fluid motion. Proc. R. Soc. Lond. A 95 (670), 354365.
Hulme, A. 1982 The wave forces acting on a floating hemisphere undergoing forced periodic oscillations. J. Fluid Mech. 121, 443463.
Koplik, J. & Maldarelli, C. 2017 Diffusivity and hydrodynamic drag of nanoparticles at a vapor–liquid interface. Phys. Rev. Fluids 2 (2), 024303.
Kralchevsky, P. A. & Nagayama, K. 2000 Capillary interactions between particles bound to interfaces, liquid films and biomembranes. Adv. Colloid Interface Sci. 85 (2), 145192.
Kralchevsky, P. A., Paunov, V. N. & Nagayama, K. 1995 Lateral capillary interaction between particles protruding from a spherical liquid layer. J. Fluid Mech. 299, 105132.
Lamb, H. 1932 Hydrodynamics. Cambridge University Press.
Landau, L. D. & Lifshits, E. M. 1999 Course of Theoretical Physics, vol. 6. Butterworth-Heinemann.
Le Merrer, M., Clanet, C., Quéré, D., Raphaël, E. & Chevy, F. 2011 Wave drag on floating bodies. Proc. Natl Acad. Sci. USA 108 (37), 1506415068.
Ledesma-Alonso, R., Tordjeman, P. & Legendre, D. 2014 Dynamics of a thin liquid film interacting with an oscillating nano-probe. Soft Matt. 10 (39), 77367752.
Lee, D.-G., Cicuta, P. & Vella, D. 2017 Self-assembly of repulsive interfacial particles via collective sinking. Soft Matt. 13 (1), 212221.
Lishchuk, S. V. 2016 Dilatational viscosity of dilute particle–laden fluid interface at different contact angles. Phys. Rev. E 94 (6), 063111.
Lishchuk, S. V., Halliday, I. & Care, C. M. 2006 Shear viscosity of bulk suspensions at low Reynolds number with the three-dimensional lattice Boltzmann method. Phys. Rev. E 74 (1), 017701.
Moláček, J. & Bush, J. W. M. 2013 Drops walking on a vibrating bath: towards a hydrodynamic pilot-wave theory. J. Fluid Mech. 727, 612647.
Morse, D. C. & Witten, T. A. 1993 Droplet elasticity in weakly compressed emulsions. Europhys. Lett. 22 (7), 549.
Mulligan, M. K. & Rothstein, J. P. 2011 Deformation and breakup of micro-and nanoparticle stabilized droplets in microfluidic extensional flows. Langmuir 27 (16), 97609768.
Oettel, M. & Dietrich, S. 2008 Colloidal interactions at fluid interfaces. Langmuir 24 (4), 14251441.
Plesset, M. S. & Prosperetti, A. 1977 Bubble dynamics and cavitation. Annu. Rev. Fluid Mech. 9 (1), 145185.
Poulichet, V. & Garbin, V. 2015 Ultrafast desorption of colloidal particles from fluid interfaces. Proc. Natl Acad. Sci. USA 112 (19), 59325937.
Poulichet, V., Huerre, A. & Garbin, V. 2017 Shape oscillations of particle-coated bubbles and directional particle expulsion. Soft Matt. 13 (1), 125133.
Pozrikidis, C. 2007 Particle motion near and inside an interface. J. Fluid Mech. 575, 333357.
Prabhudesai, G., Bihi, I., Zoueshtiagh, F., Jose, J. & Baudoin, M. 2017 Nonspherical armoured bubble vibration. Soft Matt. 13 (21), 38793884.
Prosperetti, A. 2011 Advanced Mathematics for Applications. Cambridge University Press.
Protière, S., Boudaoud, A. i. & Couder, Y. 2006 Particle–wave association on a fluid interface. J. Fluid Mech. 554, 85108.
Protière, S., Couder, Y., Fort, E. & Boudaoud, A. 2005 The self-organization of capillary wave sources. J. Phys.: Condens. Matter 17 (45), S3529.
Prudnikov, A. P., Brychkov, Y. A., Marichev, O. I. & Romer, R. H. 1988 Integrals and Series Vol. 2: Special Functions. Gordon and Breach Science Publisher.
Raphaël, E. & De Gennes, P.-G. 1996 Capillary gravity waves caused by a moving disturbance: wave resistance. Phys. Rev. E 53 (4), 3448.
Saif, T. A. 2002 On the capillary interaction between solid plates forming menisci on the surface of a liquid. J. Fluid Mech. 473, 321347.
Sanlı, C., Lohse, D. & van der Meer, D. 2014 From antinode clusters to node clusters: the concentration-dependent transition of floaters on a standing Faraday wave. Phys. Rev. E 89 (5), 053011.
Sharifi-Mood, N., Liu, I. B. & Stebe, K. J. 2015 Curvature capillary migration of microspheres. Soft Matt. 11 (34), 67686779.
Singh, P., Joseph, D. D., Fischer, I. S. & Dalal, B. 2011 Role of particle inertia in adsorption at fluid–liquid interfaces. Phys. Rev. E 83 (4), 041606.
Singh, P., Joseph, D. D., Gurupatham, S. K., Dalal, B. & Nudurupati, S. 2009 Spontaneous dispersion of particles on liquid surfaces. Proc. Natl Acad. Sci. USA 106 (47), 1976119764.
Snezhko, A. & Aranson, I. S. 2011 Magnetic manipulation of self-assembled colloidal asters. Nat. Mater. 10 (9), 698.
Stamou, D., Duschl, C. & Johannsmann, D. 2000 Long-range attraction between colloidal spheres at the air–water interface: the consequence of an irregular meniscus. Phys. Rev. E 62 (4), 5263.
Stancik, E. J, Gavranovic, G. T., Widenbrant, M. J. O., Laschitsch, A. T., Vermant, J. & Fuller, G. G. 2003 Structure and dynamics of particle monolayers at a liquid–liquid interface subjected to shear flow. Faraday Discuss. 123, 145156.
Stancik, E. J., Widenbrant, M. J. O., Laschitsch, A. T., Vermant, J. & Fuller, G. G. 2002 Structure and dynamics of particle monolayers at a liquid–liquid interface subjected to extensional flow. Langmuir 18 (11), 43724375.
Ursell, F. 1953 Short surface waves due to an oscillating immersed body. Proc. R. Soc. Lond. A 220, 90103.
Ursell, F. 1954 Water waves generated by oscillating bodies. Q. J. Mech. Appl. Maths 7 (4), 427437.
Van Nierop, E. A., Stijnman, M. A. & Hilgenfeldt, S. 2005 Shape-induced capillary interactions of colloidal particles. Europhys. Lett. 72 (4), 671.
Vassileva, N. D., van den Ende, D., Mugele, F. & Mellema, J. 2005 Capillary forces between spherical particles floating at a liquid–liquid interface. Langmuir 21 (24), 1119011200.
Vella, D. 2015 Floating versus sinking. Annu. Rev. Fluid Mech. 47, 115135.
Vella, D., Metcalfe, P. D. & Whittaker, R. J. 2006 Equilibrium conditions for the floating of multiple interfacial objects. J. Fluid Mech. 549, 215224.
Vidal, A. & Botto, L. 2017 Slip flow past a gas–liquid interface with embedded solid particles. J. Fluid Mech. 813, 152174.
Wang, W., Giltinan, J., Zakharchenko, S. & Sitti, M. 2017 Dynamic and programmable self-assembly of micro-rafts at the air–water interface. Sci. Adv. 3 (5), e1602522.
Wdołowski, K. & Napiórkowski, M. 2015 Dynamics of a liquid film of arbitrary thickness perturbed by a nano-object. Soft Matt. 11 (13), 26392654.
Zanini, M., Marschelke, C., Anachkov, S. E, Marini, E., Synytska, A. & Isa, L. 2017 Universal emulsion stabilization from the arrested adsorption of rough particles at liquid–liquid interfaces. Nat. Commun. 8, 15701.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed