Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 47
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Alpak, Faruk O. Riviere, Beatrice and Frank, Florian 2016. A phase-field method for the direct simulation of two-phase flows in pore-scale media using a non-equilibrium wetting boundary condition. Computational Geosciences,


    Liu, Haihu Kang, Qinjun Leonardi, Christopher R. Schmieschek, Sebastian Narváez, Ariel Jones, Bruce D. Williams, John R. Valocchi, Albert J. and Harting, Jens 2016. Multiphase lattice Boltzmann simulations for porous media applications. Computational Geosciences, Vol. 20, Issue. 4, p. 777.


    Pinilla, Johana Bruneau, Charles-Henri and Tancogne, Sandra 2016. Front-tracking by the level-set and the volume penalization methods in a two-phase microfluidic network. International Journal for Numerical Methods in Fluids, Vol. 80, Issue. 1, p. 23.


    Pradas, M. Savva, N. Benziger, J. B. Kevrekidis, I. G. and Kalliadasis, S. 2016. Dynamics of Fattening and Thinning 2D Sessile Droplets. Langmuir, Vol. 32, Issue. 19, p. 4736.


    Schweizer, Marco Öttinger, Hans Christian and Savin, Thierry 2016. Nonequilibrium thermodynamics of an interface. Physical Review E, Vol. 93, Issue. 5,


    Thampi, Sumesh P. Pagonabarraga, Ignacio Adhikari, Ronojoy and Govindarajan, Rama 2016. Universal evolution of a viscous–capillary spreading drop. Soft Matter, Vol. 12, Issue. 28, p. 6073.


    Cai, Xuan Marschall, Holger Wörner, Martin and Deutschmann, Olaf 2015. Numerical Simulation of Wetting Phenomena with a Phase-Field Method Using OpenFOAM®. Chemical Engineering & Technology, Vol. 38, Issue. 11, p. 1985.


    Huang, Jun-Jie Huang, Haibo and Wang, Xinzhu 2015. Wetting boundary conditions in numerical simulation of binary fluids by using phase-field method: some comparative studies and new development. International Journal for Numerical Methods in Fluids, Vol. 77, Issue. 3, p. 123.


    Jaensson, N.O. Hulsen, M.A. and Anderson, P.D. 2015. Stokes–Cahn–Hilliard formulations and simulations of two-phase flows with suspended rigid particles. Computers & Fluids, Vol. 111, p. 1.


    Lamorgese, A. and Mauri, R. 2015. Buoyancy-driven detachment of a wall-bound pendant drop: Interface shape at pinchoff and nonequilibrium surface tension. Physical Review E, Vol. 92, Issue. 3,


    Lee, Hyun Geun and Kim, Junseok 2015. An efficient numerical method for simulating multiphase flows using a diffuse interface model. Physica A: Statistical Mechanics and its Applications, Vol. 423, p. 33.


    Pashos, G. Kokkoris, G. and Boudouvis, A.G. 2015. A modified phase-field method for the investigation of wetting transitions of droplets on patterned surfaces. Journal of Computational Physics, Vol. 283, p. 258.


    Pashos, George Kokkoris, George and Boudouvis, Andreas G. 2015. Minimum Energy Paths of Wetting Transitions on Grooved Surfaces. Langmuir, Vol. 31, Issue. 10, p. 3059.


    Ben Said, Marouen Selzer, Michael Nestler, Britta Braun, Daniel Greiner, Christian and Garcke, Harald 2014. A Phase-Field Approach for Wetting Phenomena of Multiphase Droplets on Solid Surfaces. Langmuir, Vol. 30, Issue. 14, p. 4033.


    Huang, Jun-Jie Huang, Haibo and Wang, Xinzhu 2014. Numerical study of drop motion on a surface with stepwise wettability gradient and contact angle hysteresis. Physics of Fluids, Vol. 26, Issue. 6, p. 062101.


    Liu, Haihu Valocchi, Albert J. Zhang, Yonghao and Kang, Qinjun 2014. Lattice Boltzmann phase-field modeling of thermocapillary flows in a confined microchannel. Journal of Computational Physics, Vol. 256, p. 334.


    Chakraborty, Jeevanjyoti and Chakraborty, Suman 2013. Influence of hydrophobic effects on streaming potential. Physical Review E, Vol. 88, Issue. 4,


    Huang, Jun-Jie Huang, Haibo Shu, Chang Chew, Yong Tian and Wang, Shi-Long 2013. Hybrid multiple-relaxation-time lattice-Boltzmann finite-difference method for axisymmetric multiphase flows. Journal of Physics A: Mathematical and Theoretical, Vol. 46, Issue. 5, p. 055501.


    Shao, J.Y. Shu, C. and Chew, Y.T. 2013. Development of an immersed boundary-phase field-lattice Boltzmann method for Neumann boundary condition to study contact line dynamics. Journal of Computational Physics, Vol. 234, p. 8.


    Shao, J. Y. Shu, C. Wu, J. and Chew, Y. T. 2013. A stencil adaptive phase-field lattice Boltzmann method for two dimensional incompressible multiphase flows. International Journal for Numerical Methods in Fluids, Vol. 72, Issue. 6, p. 671.


    ×
  • Journal of Fluid Mechanics, Volume 572
  • February 2007, pp. 367-387

Capillary spreading of a droplet in the partially wetting regime using a diffuse-interface model

  • V. V. KHATAVKAR (a1), P. D. ANDERSON (a1) and H. E. H. MEIJER (a1)
  • DOI: http://dx.doi.org/10.1017/S0022112006003533
  • Published online: 01 February 2007
Abstract

The spreading of a liquid droplet on a smooth solid surface in the partially wetting regime is studied using a diffuse-interface model based on the Cahn--Hilliard theory. The model is extended to include non-90 contact angles. The diffuse-interface model considers the ambient fluid displaced by the droplet while spreading as a liquid. The governing equations of the model for the axisymmetric case are solved numerically using a finite-spectral-element method. The viscosity of the ambient fluid is found to affect the time scale of spreading, but the general spreading behaviour remains unchanged. The wettability expressed in terms of the equilibrium contact angle is seen to influence the spreading kinetics from the early stages of spreading. The results show agreement with the experimental data reported in the literature.

Copyright
Corresponding author
Author to whom correspondence should be addressed: p.d.anderson@tue.nl
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

P. R. Amestoy & I. S. Duff 1989a Memory management issues in sparse mutlifrontal methods on multiprocessors. Intl J. Supercomput. Applics. 7, 64.

P. R. Amestoy & I. S. Duff 1989b Vectorization of a multiprocessor mutlifrontal code. Intl J. Supercomput. Applics. 3, 41.

P. R. Amestoy & C. Puglisi 2002 An unsymmetrized multifrontal LU factorization. SIAM J. Matrix Anal. Applics. 24, 553.

D. M. Anderson , G. B. McFadden & A. A. Wheeler 1998 Diffuse-interface methods in fluid mechanics. Annu. Rev. Fluid Mech. 30, 139165.

J.-L. Barrat & L. Bocquet 1999 Large slip effects at a nonwetting fluid–solid interface. Phys. Rev. Lett. 82, 46714674.

I. B. Bazhlekov , P. D. Anderson & H. E. H. Meijer 2004 Non-singular boundary-integral method for deformable drops in viscous flows. Phys. Fluids 16 (4), 10641081.

A. J. Briant & J. M. Yeomans 2004 Lattice Boltzmann simulations of contact line motion. II. Binary fluids. Phys. Rev. E 69, 031603.

J. W. Cahn 1965 Phase separation by spinodal decomposition in isotropic systems. J. Chem. Phys. 42, 9399.

J. W. Cahn 1977 Critical point wetting. J. Chem. Phys. 66, 36673672.

J. W. Cahn & J. E. Hilliard 1958 Free energy of a nonuniform system. I. Interfacial energy. J. Chem. Phys. 28, 258267.

R. Chella & J. Viñals 1996 Mixing of a two-phase fluid by cavity flow. Phys. Rev. E 53, 38323840.

H.-Y. Chen , D. Jasnow & J. Viñals 2000 Interface and contact line motion in a two phase fluid under shear flow. Phys. Rev. Lett. 85, 16861689.

M. Cieplak , J. Koplik & J. R. Banavar 2001 Boundary conditions at fluid–solid interface. Phys. Rev. Lett. 86, 803806.

F. T. Dodge 1988 The spreading of liquid droplets on solid surfaces. J. Colloid Interface Sci. 121, 154160.

P. Durbin 1988 Considerations on the moving contact-line singularity, with application to frictional drag on a slender drop. J. Fluid Mech. 197, 157169.

V. E. B. Dussan 1979 On the spreading of liquids on solid surfaces: static and dynamic contact lines. Annu. Rev. Fluid Mech. 11, 371400.

V. E. B. Dussan & S. H. Davis 1974 On the motion of a fluid–fluid interface along a surface. J. Fluid Mech. 65, 7195.

R. Foister 1990 The kinetics of displacement wetting in liquid/liquid/solid systems. J. Colloid Interface Sci. 136, 266282.

A. Fournier , H. P. Bunge , R. Hollerbach & J. P. Villote 2004 Application of the spectral-element method to the axisymmetric Navier–Stokes equation. Geophys. J. Intl 156, 682700.

P. G. de Gennes 1985 Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827862.

P. G. de Gennes , X. Hua & P. Levinson 1990 Dynamics of wetting: local contact angles. J. Fluid Mech. 212, 5563.

M. I. Gerritsma & T. N. Phillips 2000 Spectral element methods for axisymmetric Stokes problem. J. Comput. Phys. 164, 81103.

L. M. Hocking 1977 A moving fluid interface. Part 2. The removal of force singularity by a slip flow. J. Fluid Mech. 79, 209229.

C. Huh & L. E. Scriven 1971 Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J. Colloid Interface Sci. 35, 85100.

D. Jacqmin 1999 Calculation of two-phase Navier–Stokes flows using phase-field modeling. J. Comput. Phys. 155, 96127.

D. Jacqmin 2000 Contact-line dynamics of a diffuse fluid interface. J. Fluid Mech. 402, 5788.

D. Jasnow & J. Viñals 1996 Coarse-grained description of thermo-capillary flow. Phys. Fluids 8 (3), 660669.

D. D. Joseph & Y. Y. Renardy 1993 Fundamentals of Two-Fluid Dynamics. Springer.

B. Keestra , P. C. J. van Puyvelde , P. D. Anderson & H. E. H. Meijer 2003 Diffuse interface modeling of the morphology and rheology of immiscible polymer blends. Phys. Fluids 15, 25672575.

J. Koplik , J. R. Banavar & J. F. Willemsen 1988 Molecular dynamics of Poiseuille flow and moving contact lines. Phys. Rev. Lett. 60, 12821285.

J. Koplik , J. R. Banavar & J. F. Willemsen 1989 Molecular dynamics of fluid flow at solid surfaces. Phys. Fluids A 1, 781794.

H.-G. Lee , J. S. Lowengrub & J. Goodman 2002a Modeling pinchoff and reconnection in a Hele-Shaw cell. I. The models and their calibration. Phys. Fluids 14 (2), 492513.

J. Lowengrub & L. Truskinovsky 1998 Quasi-incompressible Cahn–Hilliard fluids. Proc. R. Soc. London A 454, 26172654.

A. Marmur 1983 Equilibrium and spreading of liquids on solid surfaces. Adv. Colloid Interface Sci. 19, 75102.

E. Naumann & D. He 2001 Nonlinear diffusion and phase separation. Chem. Engng Sci. 56, 19992018.

M. J. de Ruijter , J. D. Coninck & G. Oshanin 1999 Droplet spreading: partial wetting regime revisited. Langmuir 15, 22092216.

M. J. de Ruijter , M. Charlot , M. Voue & J. D. Coninck 2000 Experimental evidence of several time scales in droplet spreading. Langmuir 16, 23632368.

A. E. Seaver & J. C. Berg 1994 Spreading of a droplet on a solid surface. J. Appl. Polymer Sci. 52, 431435.

P. Seppecher 1996 Moving contact lines in the Cahn–Hilliard theory. Intl J. Engng Sci. 34, 977992.

Y. D. Shikhmurzaev 1993a A two-layer model of an interface between immiscible fluids. Physica A 192, 4762.

Y. D. Shikhmurzaev 1993b The moving contact lines on a smooth solid surface. Intl J. Multiphase Flow 19, 589610.

Y. D. Shikhmurzaev 1994 Mathematical modeling of wetting hydrodynamics. Fluid Dyn. Res. 13, 4564.

Y. D. Shikhmurzaev 1997a Moving contact lines in liquid/liquid/solid systems. J. Fluid Mech. 334, 211249.

Y. D. Shikhmurzaev 1997b Spreading of drops on solid surfaces in a quasi-static regime. Phys. Fluids 9, 266275.

P. A. Thompson & M. O. Robbins 1989 Simulations of contact line motion: slip and the dynamic contact angle. Phys. Rev. Lett. 63, 766769.

P. A. Thompson & M. O. Robbins 1990 Shear flow near solids: epitaxial order and flow boundary conditions. Phys. Rev. A 41 (12), 68306837.

M. Verschueren , F. van de Vosse & H. Meijer 2001 Diffuse-interface modelling of thermocapillary flow instabilities in a Hele-Shaw cell. J. Fluid Mech. 434, 153166.

P. Yue , J. J. Feng , C. Liu & J. Shen 2004 A diffuse-interface method for simulating two-phase flows of complex fluids. J. Fluid Mech. 515, 293317.

A. Zosel 1993 Studies of the wetting kinetics of liquid drops on solid surfaces. Colloid Polymer Sci. 271, 680687.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax