Skip to main content
×
Home

Capillary spreading of a droplet in the partially wetting regime using a diffuse-interface model

  • V. V. KHATAVKAR (a1), P. D. ANDERSON (a1) and H. E. H. MEIJER (a1)
Abstract

The spreading of a liquid droplet on a smooth solid surface in the partially wetting regime is studied using a diffuse-interface model based on the Cahn--Hilliard theory. The model is extended to include non-90 contact angles. The diffuse-interface model considers the ambient fluid displaced by the droplet while spreading as a liquid. The governing equations of the model for the axisymmetric case are solved numerically using a finite-spectral-element method. The viscosity of the ambient fluid is found to affect the time scale of spreading, but the general spreading behaviour remains unchanged. The wettability expressed in terms of the equilibrium contact angle is seen to influence the spreading kinetics from the early stages of spreading. The results show agreement with the experimental data reported in the literature.

Copyright
Corresponding author
Author to whom correspondence should be addressed: p.d.anderson@tue.nl
References
Hide All
Amestoy P. R. & Duff I. S. 1989a Memory management issues in sparse mutlifrontal methods on multiprocessors. Intl J. Supercomput. Applics. 7, 64.
Amestoy P. R. & Duff I. S. 1989b Vectorization of a multiprocessor mutlifrontal code. Intl J. Supercomput. Applics. 3, 41.
Amestoy P. R. & Puglisi C. 2002 An unsymmetrized multifrontal LU factorization. SIAM J. Matrix Anal. Applics. 24, 553.
Anderson D. M., McFadden G. B. & Wheeler A. A. 1998 Diffuse-interface methods in fluid mechanics. Annu. Rev. Fluid Mech. 30, 139165.
Barrat J.-L. & Bocquet L. 1999 Large slip effects at a nonwetting fluid–solid interface. Phys. Rev. Lett. 82, 46714674.
Bazhlekov I. B. 2003 Non-singular boundary-integral method for deformable drops in viscous flows. PhD thesis, Eindhoven University of Technology, the Netherlands.
Bazhlekov I. B., Anderson P. D. & Meijer H. E. H. 2004 Non-singular boundary-integral method for deformable drops in viscous flows. Phys. Fluids 16 (4), 10641081.
Beveridge G. S. G. & Schechter R. S. 1970 Optimization: Theory and Practice. McGraw–Hill.
Blake T. D. 1993 Dynamic Contact Angles and Wetting Kinetics, Surfactant Science Series, vol. 49. Marcel Dekker.
Briant A. J. & Yeomans J. M. 2004 Lattice Boltzmann simulations of contact line motion. II. Binary fluids. Phys. Rev. E 69, 031603.
Briant A. J., Wagner A. J. & Yeomans J. M. 2004 Lattice Boltzmann simulations of contact line motion. I. Liquid–gas systems. Phys. Rev. E 69, 031602.
Cahn J. W. 1965 Phase separation by spinodal decomposition in isotropic systems. J. Chem. Phys. 42, 9399.
Cahn J. W. 1977 Critical point wetting. J. Chem. Phys. 66, 36673672.
Cahn J. W. & Hilliard J. E. 1958 Free energy of a nonuniform system. I. Interfacial energy. J. Chem. Phys. 28, 258267.
Chella R. & Viñals J. 1996 Mixing of a two-phase fluid by cavity flow. Phys. Rev. E 53, 38323840.
Chen H.-Y., Jasnow D. & Viñals J. 2000 Interface and contact line motion in a two phase fluid under shear flow. Phys. Rev. Lett. 85, 16861689.
Cieplak M., Koplik J. & Banavar J. R. 2001 Boundary conditions at fluid–solid interface. Phys. Rev. Lett. 86, 803806.
Davis H. T. & Scriven L. E. 1982 Stress and structure in fluid interfaces. Adv. Chem. Phys. 49, 357454.
Dodge F. T. 1988 The spreading of liquid droplets on solid surfaces. J. Colloid Interface Sci. 121, 154160.
Durbin P. 1988 Considerations on the moving contact-line singularity, with application to frictional drag on a slender drop. J. Fluid Mech. 197, 157169.
Dussan V. E. B. 1979 On the spreading of liquids on solid surfaces: static and dynamic contact lines. Annu. Rev. Fluid Mech. 11, 371400.
Dussan V. E. B. & Davis S. H. 1974 On the motion of a fluid–fluid interface along a surface. J. Fluid Mech. 65, 7195.
Foister R. 1990 The kinetics of displacement wetting in liquid/liquid/solid systems. J. Colloid Interface Sci. 136, 266282.
Fournier A., Bunge H. P., Hollerbach R. & Villote J. P. 2004 Application of the spectral-element method to the axisymmetric Navier–Stokes equation. Geophys. J. Intl 156, 682700.
de Gennes P. G. 1985 Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827862.
de Gennes P. G., Hua X. & Levinson P. 1990 Dynamics of wetting: local contact angles. J. Fluid Mech. 212, 5563.
Gerritsma M. I. & Phillips T. N. 2000 Spectral element methods for axisymmetric Stokes problem. J. Comput. Phys. 164, 81103.
Gunton J. D., Miguel M. S. & Sahni P. S. 1983 The Dynamics of First-Order Phase Transitions, Phase Transitions and Critical Phenomena, vol. 8. Academic.
Hocking L. M. 1977 A moving fluid interface. Part 2. The removal of force singularity by a slip flow. J. Fluid Mech. 79, 209229.
Huh C. & Scriven L. E. 1971 Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J. Colloid Interface Sci. 35, 85100.
Jacqmin D. 1999 Calculation of two-phase Navier–Stokes flows using phase-field modeling. J. Comput. Phys. 155, 96127.
Jacqmin D. 2000 Contact-line dynamics of a diffuse fluid interface. J. Fluid Mech. 402, 5788.
Jasnow D. & Viñals J. 1996 Coarse-grained description of thermo-capillary flow. Phys. Fluids 8 (3), 660669.
Joseph D. D. & Renardy Y. Y. 1993 Fundamentals of Two-Fluid Dynamics. Springer.
Keestra B., van Puyvelde P. C. J., Anderson P. D. & Meijer H. E. H. 2003 Diffuse interface modeling of the morphology and rheology of immiscible polymer blends. Phys. Fluids 15, 25672575.
Kistler S. F. 1993 Hydrodynamics of Wetting, Surfactant Science Series, vol. 49. Marcel Dekker.
Koplik J., Banavar J. R. & Willemsen J. F. 1988 Molecular dynamics of Poiseuille flow and moving contact lines. Phys. Rev. Lett. 60, 12821285.
Koplik J., Banavar J. R. & Willemsen J. F. 1989 Molecular dynamics of fluid flow at solid surfaces. Phys. Fluids A 1, 781794.
Lee H.-G., Lowengrub J. S. & Goodman J. 2002a Modeling pinchoff and reconnection in a Hele-Shaw cell. I. The models and their calibration. Phys. Fluids 14 (2), 492513.
Lee H.-G., Lowengrub J. S. & Goodman J. 2002b Modeling pinchoff and reconnection in a Hele-Shaw cell. II. Analysis and simulation in the non-linear regime. Phys. Fluids 14 (2), 514545.
Lowengrub J. & Truskinovsky L. 1998 Quasi-incompressible Cahn–Hilliard fluids. Proc. R. Soc. London A 454, 26172654.
Marmur A. 1983 Equilibrium and spreading of liquids on solid surfaces. Adv. Colloid Interface Sci. 19, 75102.
Naumann E. & He D. 2001 Nonlinear diffusion and phase separation. Chem. Engng Sci. 56, 19992018.
Rowlinson J. S. & Widom B. 1989 Molecular Theory of Capillarity. Clarendon.
de Ruijter M. J., Coninck J. D. & Oshanin G. 1999 Droplet spreading: partial wetting regime revisited. Langmuir 15, 22092216.
de Ruijter M. J., Charlot M., Voue M. & Coninck J. D. 2000 Experimental evidence of several time scales in droplet spreading. Langmuir 16, 23632368.
Seaver A. E. & Berg J. C. 1994 Spreading of a droplet on a solid surface. J. Appl. Polymer Sci. 52, 431435.
Segal A. 1995 SEPRAN Manual. Leidschendam, The Netherlands.
Seppecher P. 1996 Moving contact lines in the Cahn–Hilliard theory. Intl J. Engng Sci. 34, 977992.
Shikhmurzaev Y. D. 1993a A two-layer model of an interface between immiscible fluids. Physica A 192, 4762.
Shikhmurzaev Y. D. 1993b The moving contact lines on a smooth solid surface. Intl J. Multiphase Flow 19, 589610.
Shikhmurzaev Y. D. 1994 Mathematical modeling of wetting hydrodynamics. Fluid Dyn. Res. 13, 4564.
Shikhmurzaev Y. D. 1997a Moving contact lines in liquid/liquid/solid systems. J. Fluid Mech. 334, 211249.
Shikhmurzaev Y. D. 1997b Spreading of drops on solid surfaces in a quasi-static regime. Phys. Fluids 9, 266275.
Thompson P. A. & Robbins M. O. 1989 Simulations of contact line motion: slip and the dynamic contact angle. Phys. Rev. Lett. 63, 766769.
Thompson P. A. & Robbins M. O. 1990 Shear flow near solids: epitaxial order and flow boundary conditions. Phys. Rev. A 41 (12), 68306837.
Verschueren M. 1999 A diffuse-interface model for structure development in flow. PhD thesis, Eindhoven University of Technology, the Netherlands.
Verschueren M., van de Vosse F. & Meijer H. 2001 Diffuse-interface modelling of thermocapillary flow instabilities in a Hele-Shaw cell. J. Fluid Mech. 434, 153166.
van der Waals J. D. 1893 The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density. Verhandel. Konink. Akad. Weten. Amsterdam 1. (Engl. transl. by J. S. Rowlinson) in J. Statist. Phys. 20 (1979), 197–244.
Yue P., Feng J. J., Liu C. & Shen J. 2004 A diffuse-interface method for simulating two-phase flows of complex fluids. J. Fluid Mech. 515, 293317.
Zosel A. 1993 Studies of the wetting kinetics of liquid drops on solid surfaces. Colloid Polymer Sci. 271, 680687.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 57 *
Loading metrics...

Abstract views

Total abstract views: 167 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th November 2017. This data will be updated every 24 hours.