Skip to main content Accessibility help
×
Home

Cavitation bubble dynamics in a liquid gap of variable height

  • SILVESTRE ROBERTO GONZALEZ-AVILA (a1), EVERT KLASEBOER (a2), BOO CHEONG KHOO (a3) and CLAUS-DIETER OHL (a1)

Abstract

We report on an experimental study of cavitation bubble dynamics within sub-millimetre-sized narrow gaps. The gap height is varied, while the position of the cavitation event is fixed with respect to the lower gap wall. Four different sizes of laser-induced cavitation bubbles are studied using high-speed photography of up to 430,000 frames per second. We find a strong influence of the gap height, H, on the bubble dynamics, in particular on the collapse scenario. Also, similar bubble dynamics was found for the same non-dimensional gap height η = H/Rx, where Rx is the maximum radius in the horizontal direction. Three scenarios are observed: neutral collapse at the gap centre, collapse onto the lower wall and collapse onto the upper wall. For intermediate gap height the bubble obtains a conical shape 1.4 < η < 7.0. For large distances, η > 7.0, the bubble no longer feels the presence of the upper wall and collapses hemispherically. The collapse time increases with respect to the expansion time for decreasing values of η. Due to the small scales involved, the final stage of the bubble collapse could not be resolved temporally and numerical simulations were performed to elucidate the details of the flow. The simulations demonstrate high-speed jetting towards the upper and lower walls and complex bubble splitting for neutral collapses.

Copyright

Corresponding author

Email address for correspondence: cdohl@ntu.edu.sg

References

Hide All
Benjamin, T. B. & Ellis, A. T. 1966 Collapse of cavitation bubbles and pressure thereby produced against solid boundaries. Phil. Trans. R. Soc. Lond. A 260, 221240.
Blake, J. R. & Gibson, D. C. 1987 Cavitation bubbles near boundaries. Annu. Rev. Fluid Mech. 19, 99123.
Borkent, B. M., Gekle, S., Prosperetti, A. & Lohse, D. 2009 Nucleation threshold and deactivation mechanisms of nanoscopic cavitation nuclei. Phys. Fluids 21, 102003.
Chahine, G. L. 1982 Experimental and asymptotic study of non-spherical bubble collapse. Appl. Sci. Res. 38, 187197.
Chen, Y. H., Chu, H. Y. & I, L. 2006 Interaction and fragmentation of pulsed laser induced microbubbles in a narrow gap. Phys. Rev. Lett. 96, 034505.
Chen, Y. L. & Israelachvili, J. 1991 New mechanism of cavitation damage. Science 252, 11571160.
Cole, R. H. 1948 Underwater Explosions. Princeton University Press.
Dijkink, R. & Ohl, C. D. 2008 Laser-induced cavitation based micropump. Lab on a Chip 8, 16761681.
Dowson, D. & Taylor, C. M. 1979 Cavitation in bearings. Annu. Rev. Fluid Mech. 11, 3566.
Ishida, H., Nuntadusit, C., Kimoto, H., Nakagawa, T. & Yamamoto, T. 2001 Cavitation bubble behavior near solid boundaries. In CAV 2001: Fourth Intl Symp. on Cavitation, 20–23 June 2001, California Institute of Technology, Pasadena, CA, USA (CAV2001:sessionA5.003).
Kasolang, S. & Dwyer-Joyce, R. S. 2008 Observations of film thickness profile and cavitation around a journal bearing circumference. Tribol. Trans. 51, 231242.
Kim, W., Kim, T. H., Choi, J. & Kim, H. Y. 2009 Mechanism of particle removal by megasonic waves. Appl. Phys. Lett. 94, 081908.
Klaseboer, E., Fong, S. W., Turangan, C. K., Khoo, B. C., Szeri, A. J., Calvisi, M. L., Sankin, G. N. & Zhong, P. 2007 Interaction of lithotripter shockwaves with single inertial cavitation bubbles. J. Fluid Mech. 593, 3356.
Krefting, D., Mettin, R. & Lauterborn, W. 2004 High-speed observation of acoustic cavitation erosion in multibubble systems. Ultrason. Sonochem. 11, 119123.
Kucherenko, V. V. & Shamko, V. V. 1986 Dynamics of electric-explosion cavities between two solid parallel walls. J. Appl. Mech. Tech. Phys. 27, 112115.
Lauterborn, W. 1982 Cavitation bubble dynamics – new tools for an intricate problem. Appl. Sci. Res. 38, 165178.
Le Gac, S., Zwaan, E., Van Den Berg, A. & Ohl, C. D. 2007 Sonoporation of suspension cells with a single cavitation bubble in a microfluidic confinement. Lab on a Chip 7, 16661672.
Lee, M., Klaseboer, E. & Khoo, B. C. 2007 On the boundary integral method for the rebounding bubble. J. Fluid Mech. 570, 407429.
Lindau, O. & Lauterborn, W. 2003 Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall. J. Fluid Mech. 479, 327348.
Lim, K. Y., Quinto-SU, P. A., Klaseboer, E., Khoo, B. C., Venugopalan, V. & Ohl, C. D. 2010 Nonspherical laser-induced cavitation bubbles. Phys. Rev. E 81, 016308.
Ohl, C. D., Arora, M., Ikink, R., De Jong, N., Versluis, M., Delius, M. & Lohse, D. 2006 Sonoporation from jetting cavitation bubbles. Biophys. J. 91, 42854295.
Philipp, A. & Lauterborn, W. 1998 Cavitation erosion by single laser-produced bubbles. J. Fluid Mech. 361, 75116.
Quinto-Su, P. A., Huang, X. H., Gonzalez-Avila, S. R., Wu, T. & Ohl, C. D. 2010 Manipulation and microrheology of carbon nanotubes with laser-induced cavitation bubbles. Phys. Rev. Lett. 104, 014501.
Quinto-Su, P. A., Lim, K. Y. & Ohl, C. D. 2009 Cavitation bubble dynamics in microfluidic gaps of variable height. Phys. Rev. E 80, 047301.
Reynolds, O. 1886 On the theory of lubrication and its applications to Mr Beauchamp's experiments, including an experimental determination of the viscosity of olive oil. Reprinted from the Phil. Trans. R. Soc., Part I; see also Papers on Mechanical and Physical Subjects, Cambridge University Press, Volume II, 1901 for a reprint.
Shima, A. & Nakajima, K. 1977 Collapse of a non-hemispherical bubble attached to a solid wall. J. Fluid Mech. 80, 369391.
Sun, C., Can, E., Dijkink, R., Lohse, D. & Prosperetti, A. 2009 Growth and collapse of a vapour bubble in a microtube: the role of thermal effects. J. Fluid Mech. 632, 516.
Tong, R. P., Schiffers, W. P., Shaw, S. J., Blake, J. R. & Emmony, D. C. 1999 The role of ‘splashing’ in the collapse of a laser-generated cavity near a rigid boundary. J. Fluid Mech. 380, 339361.
Vogel, A. & Lauterborn, W. 1988 Acoustic transient generation by laser-produced cavitation bubbles near solid boundaries. J. Acoust. Soc. Am. 84, 719731.
Vogel, A., Lauterborn, W. & Timm, R. 1989 Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary. J. Fluid Mech. 206, 299338.
Wang, Q. X., Yeo, K. S., Khoo, B. C. & Lam, K. Y. 1996 Nonlinear interaction between gas bubble and free surface. Comput. Fluids 25, 607628.
You, L. C., Kuhl, T. & Israelachvili, J. 1992. Mechanism of cavitation damage in thin liquid-films-collapse-damage vs inception damage. Wear 153, 3151.
Zwaan, E., Le Gac, S., Tsuji, K. & Ohl, C. D. 2007 Controlled cavitation in microfluidic systems. Phys. Rev. Lett. 98, 254501.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Type Description Title
WORD
Supplementary materials

Gonzalez-Avila supplementary material
Supplementary figures

 Word (158 KB)
158 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed