Skip to main content Accessibility help
×
Home

Cavity formation by the impact of Leidenfrost spheres

  • J. O. Marston (a1), I. U. Vakarelski (a1) (a2) and S. T. Thoroddsen (a1) (a2)

Abstract

We report observations of cavity formation and subsequent collapse when a heated sphere impacts onto a liquid pool. When the sphere temperature is much greater than the boiling point of the liquid, we observe an inverted Leidenfrost effect where the sphere is encompassed by a vapour layer that prevents physical contact with the liquid. This creates the ultimate non-wetting scenario during sphere penetration through a free surface, producing very smooth cavity walls. In some cases during initial entry, however, the liquid contacts the sphere at the equator, leading to the formation of a dual cavity structure. For cold sphere impacts, where a contact line is observed, we reveal details of the contact line pinning, which initially forms a sawtooth pattern. We also observe surface waves on the cavity interface for cold spheres. We compare our experimental results to previous studies of cavity dynamics and, in particular, the influence of hydrophobicity on the entry of the sphere.

Copyright

Corresponding author

Email address for correspondence: jeremy.marston@kaust.edu.sa

References

Hide All
1. Aristoff, J. M. & Bush, J. W. M. 2009 Water entry of small hydrophobic spheres. J. Fluid Mech. 619, 4578.
2. Aristoff, J. M., Truscott, T., Techet, A. H. & Bush, J. W. M. 2010 The water entry of decelerating spheres. Phys. Fluids 22, 032102.
3. Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge Universtiy Press.
4. Benkreira, H. & Khan, M. I. 2008 Air entrainment in dip coating under reduced air pressures. Chem. Engng Sci. 63 (2), 448459.
5. Bergmann, R., van der Meer, D., van der Bos, A. & Lohse, D. 2009 Controlled impact of a disk on a water surface: cavity dynamics. J. Fluid Mech. 633, 381409.
6. Biance, A.-L., Chevy, F., Clanet, C., Lagubeau, G. & Quere, D. 2006 On the elasticity of an inertial liquid shock. J. Fluid Mech. 554, 4766.
7. Blake, T. D. & Ruschak, K. J. 1979 A maximum speed of wetting. Nature 282, 489491.
8. Brennen, C. 1970 Cavity surface wave patterns and general appearance. J. Fluid Mech. 44 (1), 3349.
9. Burley, R. & Kennedy, S. B. 1976 An experimental study of air entrainment at a solid/liquid/gas interface. Chem. Engng Sci. 31, 901911.
10. Do-Quang, M. & Amberg, G. 2009 The splash of a solid sphere impacting on a liquid surface: numerical simulation of the influence of wetting. Phys. Fluids 21, 022102.
11. Duclaux, V., Caille, F., Duez, C., Ybert, C., Bocquet, L. & Clanet, C. 2007 Transient cavities. J. Fluid Mech. 591, 119.
12. Duez, C., Ybert, C., Clanet, C. & Bocquet, L. 2007 Making a splash with water repellency. Nat. Phys. 3, 180183.
13. Enriquez, O. R., Peters, I. R., Gekle, S., Schmidt, L. E., Versluis, M., van der Meer, D. & Lohse, D. 2010 Collapse of nonaxisymmetric cavities. Phys. Fluids 22, 091104.
14. Enriquez, O. R., Peters, I. R., Gekle, S., Schmidt, L. E., Versluis, M., van der Meer, D. & Lohse, D. 2011 Non-axisymmetric impact creates pineapple-shaped cavity. Phys. Fluids 23, 091106.
15. Gekle, S., van der Bos, A., Bergmann, R., van der Meer, D. & Lohse, D. 2008 Noncontinuous Froude number scaling for the closure depth of a cylindrical cavity. Phys. Rev. Lett. 100, 084502.
16. Gekle, S. & Gordillo, J. M. 2010 Generation and breakup of Worthington jets after cavity collapse. Part 1. Jet formation. J. Fluid Mech. 663, 293330.
17. Gekle, S., Gordillo, J. M., van der Meer, D. & Lohse, D. 2009 High-speed jet formation after solid object impact. Phys. Rev. Lett. 102, 034502.
18. Gekle, S., Peters, I. R., Gordillo, J. M., van der Meer, D. & Lohse, D. 2010 Supersonic air flow due to solid–liquid impact. Phys. Rev. Lett. 104, 024501.
19. Glasheen, J. W. & McMahon, T. A. 1996 Vertical water entry of disks at low Froude numbers. Phys. Fluids 8, 20782083.
20. Gordillo, J. M. & Gekle, S. 2010 Generation and breakup of Worthington jets after cavity collapse. Part 2. Tip breakup of stretched jets. J. Fluid Mech. 663, 331346.
21. Grumstrup, T., Keller, J. B. & Belmonte, A. 2007 Cavity ripples observed during the impact of solid objects into liquids. Phys. Rev. Lett. 99, 114502.
22. Lee, M., Longoria, R. G. & Wilson, D. E. 1997 Cavity dynamics in high-speed water entry. Phys. Fluids 9, 540550.
23. Leidenfrost, J. G. 1756 A Tract About Some Qualities of Common Water. Reprinted (transl. C. Wares) 1966 On the fixation of water in diverse fire. Intl J. Heat Mass Transfer 9, 1153–1166.
24. Li, L., Li, H. & Chen, T. 2008 Experimental investigation on the moving characteristics of molten metal droplets impacting coolant. Exp. Therm. Fluid Sci. 32, 962972.
25. Liu, G. & Craig, S. J. 2010 Macroscopically flat and smooth superhydrophobic surfaces: heating induced wetting transitions up to the Leidenfrost temperature. Faraday Discuss. 146, 141151.
26. Marston, J. O. & Thoroddsen, S. T. 2008 Apex jets from impacting drops. J. Fluid Mech. 614, 293302.
27. Marston, J. O., Vakarelski, I. U. & Thoroddsen, S. T. 2011 Bubble entrapment during sphere impact onto quiescent liquid surfaces. J. Fluid Mech. 680, 660670.
28. May, A. 1951 Effect of surface condition of a sphere on its water-entry cavity. J. Appl. Phys. 22, 12191222.
29. May, A. 1952 Vertical entry of missiles into water. J. Appl. Phys. 22, 13621372.
30. McMillen, J. H. 1945 Shock wave pressures in water produced by impact of small spheres. Phys. Rev. 68, 198209.
31. Meyer, L. 1999 QUEOS, an experimental investigation of the premixing phase with hot spheres. Nucl. Engng Des. 189, 191204.
32. Richardson, E. G. 1948 The impact of a solid on a liquid surface. Proc. Phys. Soc. 61, 352367.
33. Royer, J. R., Corwin, E. I., Flior, A., Cordero, M.-L., Rivers, M. L., Eng, P. J. & Jaeger, H. M. 2005 Formation of granular jets observed by high-speed X-ray radiography. Nat. Phys. 1, 164167.
34. Shirtcliffe, N. J., McHale, G., Atherton, S. & Newton, M. I. 2010 An introduction to superhydrophobicity. Adv. Colloid Interface Sci. 161, 124138.
35. Thoroddsen, S. T. & Shen, A. Q. 2001 Granular jets. Phys. Fluids 13, 46.
36. Thoroddsen, S. T., Takehara, K., Etoh, T. G. & Ohl, C. D. 2009 Spray and microjets produced by focusing a laser pulse into a hemispherical drop. Phys. Fluids 21, 112101.
37. Truscott, T. T. & Techet, A. H. 2009a Water entry of spinning spheres. J. Fluid Mech. 625, 135165.
38. Truscott, T. T. & Techet, A. H. 2009b A spin on cavity formation during water entry of hydrophobic and hydrophilic sphere. Phys. Fluids 21, 121703.
39. Vakarelski, I. U., Marston, J. O., Chan, D. Y. C. & Thoroddsen, S. T. 2011 Drag reduction by Leidenfrost vapour layers. Phys. Rev. Lett. 106, 214501.
40. Worthington, A. M. 1908 Longmans Green.
41. Worthington, A. M. & Cole, R. S. 1897 Impact with a liquid surface, studied by the aid of instantaneous photography. Phil. Trans. R. Soc. Lond. A 189, 137148.
42. Worthington, A. M. & Cole, R. S. 1900 Impact with a liquid surface, studied by the aid of instantaneous photography: paper 2. Phil. Trans. R. Soc. Lond. A 194, 175199.
43. Yan, H., Liu, Y., Kominiarczuk, J. & Yue, D. K. 2009 Cavity dynamics in water entry at low Froude numbers. J. Fluid Mech. 641, 441461.
44. Zvirin, Y., Hewitt, G. F. & Kenning, D. B. R. 1990 Boiling on free-falling spheres: drag and heat transfer coefficients. Expt. Heat Transfer 3, 185214.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Cavity formation by the impact of Leidenfrost spheres

  • J. O. Marston (a1), I. U. Vakarelski (a1) (a2) and S. T. Thoroddsen (a1) (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed