Skip to main content
    • Aa
    • Aa

Changes in the boundary-layer structure at the edge of the ultimate regime in vertical natural convection

  • Chong Shen Ng (a1), Andrew Ooi (a1), Detlef Lohse (a2) (a3) and Daniel Chung (a1)

In thermal convection for very large Rayleigh numbers ( $Ra$ ), the thermal and viscous boundary layers are expected to undergo a transition from a classical state to an ultimate state. In the former state, the boundary-layer thicknesses follow a laminar-like Prandtl–Blasius–Polhausen scaling, whereas in the latter, the boundary layers are turbulent with logarithmic corrections in the sense of Prandtl and von Kármán. Here, we report evidence of this transition via changes in the boundary-layer structure of vertical natural convection (VC), which is a buoyancy-driven flow between differentially heated vertical walls. The numerical dataset spans $Ra$ values from $10^{5}$ to $10^{9}$ and a constant Prandtl number value of $0.709$ . For this $Ra$ range, the VC flow has been previously found to exhibit classical state behaviour in a global sense. Yet, with increasing $Ra$ , we observe that near-wall higher-shear patches occupy increasingly larger fractions of the wall areas, which suggest that the boundary layers are undergoing a transition from the classical state to the ultimate shear-dominated state. The presence of streaky structures – reminiscent of the near-wall streaks in canonical wall-bounded turbulence – further supports the notion of this transition. Within the higher-shear patches, conditionally averaged statistics yield a logarithmic variation in the local mean temperature profiles, in agreement with the log law of the wall for mean temperature, and an $Ra^{0.37}$ effective power-law scaling of the local Nusselt number. The scaling of the latter is consistent with the logarithmically corrected $1/2$ power-law scaling predicted for ultimate thermal convection for very large $Ra$ . Collectively, the results from this study indicate that turbulent and laminar-like boundary layer coexist in VC at moderate to high $Ra$ and this transition from the classical state to the ultimate state manifests as increasingly larger shear-dominated patches, consistent with the findings reported for Rayleigh–Bénard convection and Taylor–Couette flows.

Corresponding author
Email address for correspondence:
Hide All
G. Ahlers , E. Bodenschatz , D. Funfschilling , S. Grossmann , X. He , D. Lohse , R. J. A. M. Stevens  & R. Verzicco 2012 Logarithmic temperature profiles in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 109, 114501.

G. Ahlers , E. Bodenschatz  & X. He 2014 Logarithmic temperature profiles of turbulent Rayleigh–Bénard convection in the classical and ultimate state for a Prandtl number of 0.8. J. Fluid Mech. 758, 436467.

G. Ahlers , S. Grossmann  & D. Lohse 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503537.

J. C. del Álamo , J. Jiménez , P. Zandonade  & R. D. Moser 2004 Scaling of the energy spectra of turbulent channels. J. Fluid Mech. 500, 135144.

J. A. Businger , J. C. Wyngaard , Y. Izumi  & E. F. Bradley 1971 Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci. 28, 181189.

D. Chung  & B. J. McKeon 2010 Large-eddy simulation of large-scale structures in long channel flow. J. Fluid Mech. 661, 341364.

J. G. Eriksson , R. I. Karlsson  & J Persson 1998 An experimental study of a two-dimensional plane turbulent wall jet. Exp. Fluids 25, 5060.

S. Grossmann  & D. Lohse 2000 Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407, 2756.

S. Grossmann  & D. Lohse 2001 Thermal convection at large Prandtl numbers. Phys. Rev. Lett. 86, 33163319.

S. Grossmann  & D. Lohse 2004 Fluctuations in turbulent Rayleigh–Bénard convection: the role of plumes. Phys. Fluids 16, 44624472.

S. Grossmann  & D. Lohse 2012 Logarithmic temperature profiles in the ultimate regime of thermal convection. Phys. Fluids 24, 125103.

S. Grossmann , D. Lohse  & C. Sun 2016 High-Reynolds number Taylor–Couette turbulence. Annu. Rev. Fluid Mech. 48, 5380.

X. He , D. Funfschilling , H. Nobach , E. Bodenschatz  & G. Ahlers 2012 Transition to the ultimate state of turbulent Rayleigh–Bénard convections. Phys. Rev. Lett. 108, 024502.

G. O. Hughes  & R. W. Griffiths 2008 Horizontal convection. Annu. Rev. Fluid Mech. 40, 185208.

N. Hutchins  & I. Marusic 2007a Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 128.

N. Hutchins  & I. Marusic 2007b Large-scale influences in near-wall turbulence. Phil. Trans. R. Soc. Lond. A 365, 647664.

S. J. Kline , W. C. Reynolds , F. A. Schraub  & P. W. Runstadler 1967 The structure of turbulent boundary layers. J. Fluid Mech. 30, 741773.

D. Lohse  & K.-Q. Xia 2010 Small-scale properties of turbulent Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 42, 335364.

I. Marusic , B. J. McKeon , P. A. Monkewitz , H. M. Nagib , A. J. Smits  & K. R. Sreenivasan 2010 Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues. Phys. Fluids 22, 065103.

C. S. Ng , A. Ooi , D. Lohse  & D. Chung 2015 Vertical natural convection: application of the unifying theory of thermal convection. J. Fluid Mech. 764, 349361.

R. Ostilla-Mónico , E. P. van der Poel , R. Verzicco , S. Grossmann  & D. Lohse 2014 Boundary layer dynamics at the transition between the classical and the ultimate regime of Taylor–Couette flow. Phys. Fluids 26, 015114.

J. Pallares , A. Vernet , J. A. Ferre  & F. X. Grau 2010 Turbulent large-scale structures in natural convection vertical channel flow. Intl J. Heat Mass Transfer 53, 41684175.

E. P. van der Poel , R. Ostilla-Mónico , R. Verzicco , S. Grossmann  & D. Lohse 2015 Logarithmic mean temperature profiles and their connection to plume emissions in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 115, 154501.

S. B. Pope 2000 Turbulent Flows. Cambridge University Press.

J. D. Scheel  & J. Schumacher 2016 Global and local statistics in turbulent convection at low Prandtl numbers. J. Fluid Mech. 802, 147173.

X.-D. Shang , X.-L. Qiu , P. Tong  & K.-Q. Xia 2003 Measured local heat transport in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 90, 074501.

X.-D. Shang , P. Tong  & K.-Q. Xia 2008 Scaling of the local convective heat flux in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 100, 244503.

O. Shishkina , S. Grossmann  & D. Lohse 2016 Heat and momentum transport scalings in horizontal convection. Geophys. Res. Lett. 43, 12191225.

O. Shishkina  & S. Horn 2016 Thermal convection in inclined cylindrical containers. J. Fluid Mech. 790, R3.

A. J. Smits , B. J. McKeon  & I. Marusic 2011 High-Reynolds number wall turbulence. Annu. Rev. Fluid Mech. 43, 353375.

T. A. M. Versteegh  & F. T. M. Nieuwstadt 1999 A direct numerical simulation of natural convection between two infinite vertical differentially heated walls scaling laws and wall functions. Intl J. Heat Mass Transfer 42, 36733693.

P. Wei  & G. Ahlers 2014 Logarithmic temperature profiles in the bulk of turbulent Rayleigh–Bénard convection for a Prandtl number of 12.3. J. Fluid Mech. 758, 809830.

I. Wygnanski , Y. Katz  & E. Horev 1992 On the applicability of various scaling laws to the turbulent wall jet. J. Fluid Mech. 234, 669690.

A. M. Yaglom 1979 Similarity laws for constant-pressure and pressure-gradient turbulent wall flows. Annu. Rev. Fluid Mech. 11, 505540.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 1
Total number of PDF views: 119 *
Loading metrics...

Abstract views

Total abstract views: 205 *
Loading metrics...

* Views captured on Cambridge Core between 21st July 2017 - 18th October 2017. This data will be updated every 24 hours.