Skip to main content
×
Home

Changes in the boundary-layer structure at the edge of the ultimate regime in vertical natural convection

  • Chong Shen Ng (a1), Andrew Ooi (a1), Detlef Lohse (a2) (a3) and Daniel Chung (a1)
Abstract

In thermal convection for very large Rayleigh numbers ( $Ra$ ), the thermal and viscous boundary layers are expected to undergo a transition from a classical state to an ultimate state. In the former state, the boundary-layer thicknesses follow a laminar-like Prandtl–Blasius–Polhausen scaling, whereas in the latter, the boundary layers are turbulent with logarithmic corrections in the sense of Prandtl and von Kármán. Here, we report evidence of this transition via changes in the boundary-layer structure of vertical natural convection (VC), which is a buoyancy-driven flow between differentially heated vertical walls. The numerical dataset spans $Ra$ values from $10^{5}$ to $10^{9}$ and a constant Prandtl number value of $0.709$ . For this $Ra$ range, the VC flow has been previously found to exhibit classical state behaviour in a global sense. Yet, with increasing $Ra$ , we observe that near-wall higher-shear patches occupy increasingly larger fractions of the wall areas, which suggest that the boundary layers are undergoing a transition from the classical state to the ultimate shear-dominated state. The presence of streaky structures – reminiscent of the near-wall streaks in canonical wall-bounded turbulence – further supports the notion of this transition. Within the higher-shear patches, conditionally averaged statistics yield a logarithmic variation in the local mean temperature profiles, in agreement with the log law of the wall for mean temperature, and an $Ra^{0.37}$ effective power-law scaling of the local Nusselt number. The scaling of the latter is consistent with the logarithmically corrected $1/2$ power-law scaling predicted for ultimate thermal convection for very large $Ra$ . Collectively, the results from this study indicate that turbulent and laminar-like boundary layer coexist in VC at moderate to high $Ra$ and this transition from the classical state to the ultimate state manifests as increasingly larger shear-dominated patches, consistent with the findings reported for Rayleigh–Bénard convection and Taylor–Couette flows.

Copyright
Corresponding author
Email address for correspondence: chongn@unimelb.edu.au
References
Hide All
Ahlers G., Bodenschatz E., Funfschilling D., Grossmann S., He X., Lohse D., Stevens R. J. A. M. & Verzicco R. 2012 Logarithmic temperature profiles in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 109, 114501.
Ahlers G., Bodenschatz E. & He X. 2014 Logarithmic temperature profiles of turbulent Rayleigh–Bénard convection in the classical and ultimate state for a Prandtl number of 0.8. J. Fluid Mech. 758, 436467.
Ahlers G., Grossmann S. & Lohse D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503537.
del Álamo J. C., Jiménez J., Zandonade P. & Moser R. D. 2004 Scaling of the energy spectra of turbulent channels. J. Fluid Mech. 500, 135144.
Businger J. A., Wyngaard J. C., Izumi Y. & Bradley E. F. 1971 Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci. 28, 181189.
Chillà F & Schumacher J 2012 New perspectives in turbulent Rayleigh–Bénard convection. Eur. Phys. J. E 35, 125.
Chung D. & McKeon B. J. 2010 Large-eddy simulation of large-scale structures in long channel flow. J. Fluid Mech. 661, 341364.
Eriksson J. G., Karlsson R. I. & Persson J 1998 An experimental study of a two-dimensional plane turbulent wall jet. Exp. Fluids 25, 5060.
Grossmann S. & Lohse D. 2000 Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407, 2756.
Grossmann S. & Lohse D. 2001 Thermal convection at large Prandtl numbers. Phys. Rev. Lett. 86, 33163319.
Grossmann S. & Lohse D. 2002 Prandtl and Rayleigh number dependence of the Reynolds number in turbulent thermal convection. Phys. Rev. E 66, 016305.
Grossmann S. & Lohse D. 2004 Fluctuations in turbulent Rayleigh–Bénard convection: the role of plumes. Phys. Fluids 16, 44624472.
Grossmann S. & Lohse D. 2011 Multiple scaling in the ultimate regime of thermal convection. Phys. Fluids 23, 045108.
Grossmann S. & Lohse D. 2012 Logarithmic temperature profiles in the ultimate regime of thermal convection. Phys. Fluids 24, 125103.
Grossmann S., Lohse D. & Sun C. 2016 High-Reynolds number Taylor–Couette turbulence. Annu. Rev. Fluid Mech. 48, 5380.
He X., Funfschilling D., Nobach H., Bodenschatz E. & Ahlers G. 2012 Transition to the ultimate state of turbulent Rayleigh–Bénard convections. Phys. Rev. Lett. 108, 024502.
Hughes G. O. & Griffiths R. W. 2008 Horizontal convection. Annu. Rev. Fluid Mech. 40, 185208.
Hutchins N. & Marusic I. 2007a Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 128.
Hutchins N. & Marusic I. 2007b Large-scale influences in near-wall turbulence. Phil. Trans. R. Soc. Lond. A 365, 647664.
Kline S. J., Reynolds W. C., Schraub F. A. & Runstadler P. W. 1967 The structure of turbulent boundary layers. J. Fluid Mech. 30, 741773.
Landau L. D. & Lifshitz E. M. 1987 Fluid Mechanics, 2nd edn. Pergamon.
Lohse D. & Xia K.-Q. 2010 Small-scale properties of turbulent Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 42, 335364.
Marusic I., McKeon B. J., Monkewitz P. A., Nagib H. M., Smits A. J. & Sreenivasan K. R. 2010 Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues. Phys. Fluids 22, 065103.
Monin A. S. & Yaglom A. M. 2007 Statistical Fluid Mechanics: Mechanics of Turbulence, vol. 1. Courier Dover Publications.
Ng C. S., Ooi A., Lohse D. & Chung D. 2015 Vertical natural convection: application of the unifying theory of thermal convection. J. Fluid Mech. 764, 349361.
Ostilla-Mónico R., van der Poel E. P., Verzicco R., Grossmann S. & Lohse D. 2014 Boundary layer dynamics at the transition between the classical and the ultimate regime of Taylor–Couette flow. Phys. Fluids 26, 015114.
Pallares J., Vernet A., Ferre J. A. & Grau F. X. 2010 Turbulent large-scale structures in natural convection vertical channel flow. Intl J. Heat Mass Transfer 53, 41684175.
van der Poel E. P., Ostilla-Mónico R., Verzicco R., Grossmann S. & Lohse D. 2015 Logarithmic mean temperature profiles and their connection to plume emissions in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 115, 154501.
Pope S. B. 2000 Turbulent Flows. Cambridge University Press.
Scheel J. D. & Schumacher J. 2016 Global and local statistics in turbulent convection at low Prandtl numbers. J. Fluid Mech. 802, 147173.
Shang X.-D., Qiu X.-L., Tong P. & Xia K.-Q. 2003 Measured local heat transport in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 90, 074501.
Shang X.-D., Tong P. & Xia K.-Q. 2008 Scaling of the local convective heat flux in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 100, 244503.
Shishkina O. 2016 Momentum and heat transport scalings in laminar vertical convection. Phys. Rev. E 93, 051102.
Shishkina O., Grossmann S. & Lohse D. 2016 Heat and momentum transport scalings in horizontal convection. Geophys. Res. Lett. 43, 12191225.
Shishkina O. & Horn S. 2016 Thermal convection in inclined cylindrical containers. J. Fluid Mech. 790, R3.
Smits A. J., McKeon B. J. & Marusic I. 2011 High-Reynolds number wall turbulence. Annu. Rev. Fluid Mech. 43, 353375.
Turner J. S. 1979 Buoyancy Effects in Fluids. Cambridge University Press.
Versteegh T. A. M. & Nieuwstadt F. T. M. 1999 A direct numerical simulation of natural convection between two infinite vertical differentially heated walls scaling laws and wall functions. Intl J. Heat Mass Transfer 42, 36733693.
Wei P. & Ahlers G. 2014 Logarithmic temperature profiles in the bulk of turbulent Rayleigh–Bénard convection for a Prandtl number of 12.3. J. Fluid Mech. 758, 809830.
Wygnanski I., Katz Y. & Horev E. 1992 On the applicability of various scaling laws to the turbulent wall jet. J. Fluid Mech. 234, 669690.
Yaglom A. M. 1979 Similarity laws for constant-pressure and pressure-gradient turbulent wall flows. Annu. Rev. Fluid Mech. 11, 505540.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 1
Total number of PDF views: 161 *
Loading metrics...

Abstract views

Total abstract views: 267 *
Loading metrics...

* Views captured on Cambridge Core between 21st July 2017 - 14th December 2017. This data will be updated every 24 hours.