Skip to main content Accesibility Help
×
×
Home

Characteristics of air entrainment during dynamic wetting failure along a planar substrate

  • E. Vandre (a1), M. S. Carvalho (a2) and S. Kumar (a1)
Abstract

Characteristic substrate speeds and meniscus shapes associated with the onset of air entrainment are studied during dynamic wetting failure along a planar substrate. Using high-speed video, the behaviour of the dynamic contact line (DCL) is recorded as a tape substrate is drawn through a bath of a glycerol/water solution. Air entrainment is identified by triangular air films that elongate from the DCL above some critical substrate speed. Meniscus confinement within a narrow gap between the substrate and a stationary plate is shown to delay air entrainment to higher speeds for a wide range of liquid viscosities, expanding upon the findings of Vandre, Carvalho & Kumar (J. Fluid Mech., vol. 707, 2012, pp. 496–520). A pressurized liquid reservoir controls the meniscus position within the confinement gap. It is found that liquid pressurization further postpones air entrainment when the meniscus is located near a sharp corner along the stationary plate. Meniscus shapes recorded near the DCL demonstrate that operating conditions influence the size of entrained air films, with smaller films appearing in the more viscous solutions. Regardless of size, air films become unstable to thickness perturbations and ultimately rupture, leading to the entrainment of air bubbles. Recorded critical speeds and air-film sizes compare well to predictions from a hydrodynamic model for dynamic wetting failure, suggesting that strong air stresses near the DCL trigger the onset of air entrainment.

Copyright
Corresponding author
Email addresses for correspondence: msc@puc-rio.br, kumar030@umn.edu
References
Hide All
Benkreira, H. & Ikin, J. B. 2010 Dynamic wetting and gas viscosity effects. Chem. Engng Sci. 65, 17901796.
Benkreira, H. & Khan, M. I. 2008 Air entrainment in dip coating under reduced air pressures. Chem. Engng Sci. 63, 448459.
Blake, T. D. 2006 The physics of moving wetting lines. J. Colloid Interface Sci. 299, 113.
Blake, T. D., Clarke, A. & Stattersfield, E. H. 2000 An investigation of electrostatic assist in dynamic wetting. Langmuir 16, 29282935.
Blake, T. D., Dobson, R. A. & Ruschak, K. J. 2004 Wetting at high capillary numbers. J. Colloid Interface Sci. 279, 198205.
Blake, T. D. & Ruschak, K. J. 1979 A maximum speed of wetting. Nature 282, 489491.
Blake, T. D. & Ruschak, K. J. 1997 Wetting: static and dynamic contact lines. In Liquid Flim Coating (ed. Kistler, S. F. & Schweizer, P. M.), pp. 6397. Chapman & Hall.
Bonn, D., Eggers, J., Indekeu, J., Meunier, J. & Rolley, E. 2009 Wetting and spreading. Rev. Mod. Phys. 81, 739805.
Burley, R. & Jolly, R. P. S. 1984 Entrainment of air into liquids by a high speed continuous solid surface. Chem. Engng Sci. 39, 13571372.
Burley, R. & Kennedy, B. S. 1976 An experimental study of air entrainment at a solid/liquid/gas interface. Chem. Engng Sci. 31, 901911.
Cohu, O. & Benkreira, H. 1998 Air entrainment in angled dip coating. Chem. Engng Sci. 53, 533540.
De Coninck, J. & Blake, T. D. 2008 Wetting and molecular dynamics simulations of simple liquids. Annu. Rev. Mater. Res. 38, 122.
de Gennes, P. G. 1985 Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827863.
Delon, G., Fermigier, M., Snoeijer, J. H. & Androtti, B. 2008 Relaxation of a dewetting contact line. Part 2. Experiments. J. Fluid Mech. 604, 5575.
Dussan V., E. B. 1976 The moving contact line: the slip boundary condition. J. Fluid Mech. 77, 665684.
Gutoff, E. B. & Kendrick, C. E. 1982 Dynamic contact angles. AIChE J. 28, 459466.
Jacqmin, D. 2002 Very, very fast wetting. J. Fluid Mech. 455, 347358.
Kistler, S. F. 1993 Hydrodynamics of wetting. In Wettability (ed. Berg, J. C.), pp. 311429. Marcel Dekker.
Lauga, E., Brenner, M. P. & Stone, H. A. 2005 Microfluidics: the no-slip boundary condition. In Handbook of Experimental Fluid Dynamics (ed. Tropea, C., Foss, J. F. & Yarin, A.), Springer.
Maleki, M., Reyssat, E., Quéré, D. & Golestanian, R. 2007 On the Landau–Levich transition. Langmuir 23, 1011610122.
Marchand, A., Chan, T. S., Snoeijer, J. H. & Andreotti, B. 2012 Air entrainment by contact lines of a solid plate plunged into a viscous fluid. Phys. Rev. Lett. 108, 204501.
Neto, C., Evan, D. R., Bonaccurso, E., Butt, H.-J. & Craig, V. S. J. 2005 Boundary slip in Newtonian liquids: a review of experimental studies. Rep. Prog. Phys. 68, 28592897.
Ravinutala, S. & Polymeropoulos, C. 2002 Entrance meniscus in a pressurized optical fiber coating applicator. Exp. Therm. Fluid Sci. 26, 573580.
Severtson, Y. C. & Aidun, C. K. 1996 Stability of two-layer stratified flow in inclined channels: applications to air entrainment in coating systems. J. Fluid Mech. 312, 173200.
Sheely, M. L. 1932 Glycerol viscosity tables. Ind. Engng Chem. 24, 10601064.
Shikhmurzaev, Y. D. 2008 Capillary Flows with Forming Interfaces. Chapman & Hall/CRC.
Simpkins, P. G. & Kuck, V. J. 2003 On air entrainment in coatings. J. Colloid Interface Sci. 263, 562571.
Snoeijer, J. H. 2006 Free-surface flows with large slopes: beyond lubrication theory. Phys. Fluids 18, 021701.
Snoeijer, J. H. & Andreotti, B. 2013 Moving contact lines: scales, regimes, and dynamical transitions. Annu. Rev. Fluid Mech. 45, 269292.
Vandre, E., Carvalho, M. S. & Kumar, S. 2012 Delaying the onset of dynamic wetting failure through meniscus confinement. J. Fluid Mech. 707, 496520.
Vandre, E., Carvalho, M. S. & Kumar, S. 2013 On the mechanism of wetting faluire during fluid displacement along a moving substrate. Phys. Fluids 25, 102103.
van Lengerich, H. B. & Steen, P. H. 2012 Energy dissipation and the contact-line region of a spreading bridge. J. Fluid Mech. 703, 111141.
Weinstein, S. J. & Ruschak, K. J. 2004 Coating flows. Annu. Rev. Fluid Mech. 36, 2953.
Yamamura, M. 2007 Assisted dynamic wetting in liquid coatings. Colloids Surf. A 311, 5560.
Yue, P. & Feng, J. J. 2011 Can diffuse-interface models quantitatively describe moving contact lines?. Eur. Phys. J. Spec. Top. 197, 3746.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Type Description Title
PDF
Supplementary materials

Vandre supplementary material
Supplementary material

 PDF (1.1 MB)
1.1 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed