Skip to main content
×
×
Home

Characterization of wind-shear effects on entrainment in a convective boundary layer

  • Armin Haghshenas (a1) and Juan Pedro Mellado (a1)
Abstract

Direct numerical simulations are used to characterize wind-shear effects on entrainment in a barotropic convective boundary layer (CBL) that grows into a linearly stratified atmosphere. We consider weakly to strongly unstable conditions $-z_{enc}/L_{Ob}\gtrsim 4$ , where $z_{enc}$ is the encroachment CBL depth and $L_{Ob}$ is the Obukhov length. Dimensional analysis allows us to characterize such a sheared CBL by a normalized CBL depth, a Froude number and a Reynolds number. The first two non-dimensional quantities embed the dependence of the system on time, on the surface buoyancy flux, and on the buoyancy stratification and wind velocity in the free atmosphere. We show that the dependence of entrainment-zone properties on these two non-dimensional quantities can be expressed in terms of just one independent variable, the ratio between a shear scale $(\unicode[STIX]{x0394}z_{i})_{s}\equiv \sqrt{1/3}\unicode[STIX]{x0394}u/N_{0}$ and a convective scale $(\unicode[STIX]{x0394}z_{i})_{c}\equiv 0.25z_{enc}$ , where $\unicode[STIX]{x0394}u$ is the velocity increment across the entrainment zone, and $N_{0}$ is the buoyancy frequency of the free atmosphere. Here $(\unicode[STIX]{x0394}z_{i})_{s}$ and $(\unicode[STIX]{x0394}z_{i})_{c}$ represent the entrainment-zone thickness in the limits of weak convective instability (strong wind) and strong convective instability (weak wind), respectively. We derive scaling laws for the CBL depth, the entrainment-zone thickness, the mean entrainment velocity and the entrainment-flux ratio as functions of $(\unicode[STIX]{x0394}z_{i})_{s}/(\unicode[STIX]{x0394}z_{i})_{c}$ . These scaling laws can also be expressed as functions of only a Richardson number $(N_{0}z_{enc}/\unicode[STIX]{x0394}u)^{2}$ , but not in terms of only the stability parameter $-z_{enc}/L_{Ob}$ .

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Characterization of wind-shear effects on entrainment in a convective boundary layer
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Characterization of wind-shear effects on entrainment in a convective boundary layer
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Characterization of wind-shear effects on entrainment in a convective boundary layer
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
Email address for correspondence: armin.haghshenas@mpimet.mpg.de
References
Hide All
Ansorge, C. & Mellado, J. P. 2014 Global intermittency and collapsing turbulence in the stratified planetary boundary layer. Boundary-Layer Meteorol. 153 (1), 89116.
Bernardini, M., Pirozzoli, S. & Orlandi, P. 2014 Velocity statistics in turbulent channel flow up to Re 𝜏 = 4000. J. Fluid Mech. 742, 171191.
van de Boer, A., Moene, A. F., Graf, A., Schüttemeyer, D. & Simmer, C. 2014 Detection of entrainment influences on surface-layer measurements and extension of Monin–Obukhov similarity theory. Boundary-Layer Meteorol. 152 (1), 1944.
Brucker, K. A. & Sarkar, S. 2007 Evolution of an initially turbulent stratified shear layer. Phys. Fluids 19, 105105.
Carpenter, M. & Kennedy, C. A.1994 Fourth-order -storage Runge–Kutta schemes. Tech. Rep. NASA-TM-109112, NASA Langley Research Center.
Carson, D. & Smith, F. 1975 Thermodynamic model for the development of a convectively unstable boundary layer. Adv. Geophys. 18, 111124.
Chung, D. & Matheou, G. 2012 Direct numerical simulation of stationary homogeneous stratified sheared turbulence. J. Fluid Mech. 696, 434467.
Conzemius, R. J. & Fedorovich, E. 2006a Dynamics of sheared convective boundary layer entrainment. Part I. Methodological background and large eddy simulations. J. Atmos. Sci. 63, 11511178.
Conzemius, R. J. & Fedorovich, E. 2006b Dynamics of sheared convective boundary layer entrainment. Part II. Evaluation of bulk model predictions of entrainment flux. J. Atmos. Sci. 63, 11791199.
Conzemius, R. J. & Fedorovich, E. 2007 Bulk models of the sheared convective boundary layer: evaluation through large eddy simulations. J. Atmos. Sci. 64, 786807.
Deardorff, J. W. 1970 Preliminary results from numerical integration of the unstable boundary layer. J. Atmos. Sci. 27, 12091211.
Deardorff, J. W. 1974 Three-dimensional numerical study of turbulence in an entraining mixed layer. Boundary-Layer Meteorol. 7, 199226.
Deardorff, J. W., Willis, G. E. & Stochton, B. H. 1980 Laboratory studies of the entrainment zone of a convectively mixed layer. J. Fluid Mech. 100, 4164.
Dougherty, J. P. 1961 The anisotropy of turbulence at the meteor level. J. Atmos. Terr. Phys. 21, 210213.
Fedorovich, E. & Conzemius, R. J. 2008 Effects of wind shear on the atmospheric convective boundary layer structure and evolution. Acta Geophys. 56, 114141.
Fedorovich, E., Conzemius, R. J., Esau, I., Chow, F. K., Lewellen, D., Moeng, C. H., Sullivan, P. P., Pino, D. & Vilà-Guerau De Arellano, J. 2004a Entrainment into sheared convective boundary layers as predicted by different large eddy simulation codes. In 16th Symposium on Boundary Layers and Turbulence, 9–13 August, American Meteor. Soc. Portland, ME; pp. CD–ROM, P4.7 (in preprint).
Fedorovich, E., Conzemius, R. J. & Mironov, D. 2004b Convective entrainment into a shear-Free, linearly stratified atmosphere: bulk models reevaluated through large eddy simulations. J. Atmos. Sci. 61, 281295.
Fedorovich, E. & Thäter, J. 2001 Vertical transport of heat and momentum across a sheared density interface at the top of a horizontally evolving convective boundary layer. J. Turbul. 2 (7), 117.
Fernando, H. J. S. 1991 Turbulent mixing in stratified fluids. Annu. Rev. Fluid Mech. 23, 455493.
Flores, O., Jiménez, J. & Del Álamo, J. C. 2007 Vorticity organization in the outer layer of turbulent channels with disturbed walls. J. Fluid Mech. 591, 145154.
Garcia, J. R. & Mellado, J. P. 2014 The two-layer structure of the entrainment zone in the convective boundary layer. J. Atmos. Sci. 71, 19351955.
Garratt, J. R. 1992 The Atmospheric Boundary Layer. Cambridge University Press.
Gohari, S. M. I. & Sarkar, S. 2017 Direct numerical simulation of turbulence collapse and rebirth in stably stratified ekman flow. Boundary-Layer Meteorol. 162 (3), 401426.
Hebert, D. A. & de Bruyn Kops, S. M. 2006 Predicting turbulence in flows with strong stable stratification. Phys. Fluids 18 (6), 110.
van Heerwaarden, C. C. & Mellado, J. P. 2016 Growth and decay of a convective boundary layer over a surface with a constant temperature. J. Atmos. Sci. 73 (5), 21652177.
Howland, C. J., Taylor, J. R. & Caulfield, C. P. 2018 Testing linear marginal stability in stratified shear layers. J. Fluid Mech. 839, R4.
Hunt, J. C. R. & Durbin, P. A. 1999 Perturbed vortical layers and shear sheltering. Fluid Dyn. Res. 24 (6), 375404.
Jonker, H. J. J., van Reeuwijk, M., Sullivan, P. P. & Patton, G. 2013 On the scaling of shear driven entrainment: A DNS study. J. Fluid Mech. 732, 150165.
Kim, S. W., Park, S., Pino, D. & Vilà-Guerau De Arellano, J. 2006 Entrainment parameterization in a sheared convective boundary layer by using a first-order jump model. Boundary-Layer Meteorol. 120, 455475.
Kim, S. W., Park, S. U. & Moeng, C. H. 2003 Entrainment processes in the convective boundary layer with varying wind shear. Boundary-Layer Meteorol. 108, 221245.
Lele, S. 1992 Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 1642.
Lemone, M. A. 1973 The structure and dynamics of horizontal roll vortices in the planetary boundary layer. J. Atmos. Sci. 30, 10771091.
Lenschow, D. H., Wyngaard, J. C. & Pennell, W. T. 1980 Mean-field and second-moment budgets in a baroclinic, convective boundary layer. J. Atmos. Sci. 37 (6), 13131326.
Liu, P., Sun, J. & Shen, L. 2016 Parameterization of sheared entrainment in a well-developed CBL. Part I. Evaluation of the scheme through large-eddy simulations. Adv. Atmos. Sci. 33, 11711184.
Mahrt, L. & Lenschow, D. H. 1976 Growth dynamics of the convective mixed layer. J. Atmos. Sci. 33, 4151.
Mashayek, A. & Peltier, W. R. 2011 Turbulence transition in stratified atmospheric and oceanic shear flows: Reynolds and Prandtl number controls upon the mechanism. Geophys. Res. Lett. 38 (16), l16612.
Mellado, J. P. 2012 Direct numerical simulation of free convection over a heated plate. J. Fluid Mech. 712, 418450.
Mellado, J. P. 2017 Cloud-top entrainment in stratocumulus clouds. Annu. Rev. Fluid Mech. 49 (1), 145169.
Mellado, J. P. & Ansorge, C. 2012 Factorization of the Fourier transform of the pressure-Poisson equation using finite differences in colocated grids. Z. Angew. Math. Mech. 92, 380392.
Mellado, J. P., Bretherton, C. S., Stevens, B. & Wyant, M. C. 2018 DNS and LES for simulating stratocumulus: better together. J. Adv. Model. Earth Syst. 10 (7), 14211438.
Mellado, J. P., van Heerwaarden, C. C. & Garcia, J. R. 2016 Near-surface effects of free atmosphere stratification in free convection. Boundary-Layer Meteorol. 159 (1), 6995.
Mellado, J. P., Puche, M. & van Heerwaarden, C. C. 2017 Moisture statistics in free convective boundary layers growing into linearly stratified atmospheres. Q. J. R. Meteorol. Soc. 143 (707), 24032419.
Moeng, C. H. & Sullivan, P. P. 1994 A comparison of shear- and buoyancy-driven planetary boundary layer flows. J. Atmos. Sci. 51, 9991022.
Ozmidov, R. V. 1965 On the turbulent exchange in a stably stratified ocean. Izv. Atmos. Ocean. Phys. Ser. 1 (8), 853860.
Peltier, W. R. & Caulfield, C. P. 2003 Mixing efficiency in stratified shear flows. Annu. Rev. Fluid Mech. 35 (1), 135167.
Pino, D. & Vilà-Guerau De Arellano, J. 2008 Effects of shear in the convective boundary layer: analysis of the turbulent kinetic energy budget. Acta Geophys. 56, 167193.
Pino, D., Vilà-Guerau De Arellano, J. & Duynkerke, P. J. 2003 The contribution of shear to the evolution of a convective boundary layer. J. Atmos. Sci. 60, 19131926.
Pino, D., Vilà-Guerau De Arellano, J. & Kim, S. W. 2006 Representing sheared convective boundary layer by zeroth- and first-order-jump mixed-layer models: large-eddy simulation verification. J. Appl. Meteor. Clim. 45, 12241243.
Pirozzoli, S., Bernardini, M., Verzicco, R. & Orlandi, P. 2017 Mixed convection in turbulent channels with unstable stratification. J. Fluid Mech. 821, 482516.
Portwood, G. D., de Bruyn Kops, S. M., Taylor, J. R., Salehipour, H. & Caulfield, C. P. 2016 Robust identification of dynamically distinct regions in stratified turbulence. J. Fluid Mech. 807, R2.
Salesky, S. T., Chamecki, M. & Bou-Zeid, E. 2017 On the nature of the transition between roll and cellular organization in the convective boundary layer. Boundary-Layer Meteorol. 163, 4168.
Schröter, S. J.2018 Sheared convective boundary layers: turbulence kinetic energy and entrainment dynamics. Doctoral Dissertation, Wageningen University.
Sherman, F. S., Imberger, J. & Corcos, G. M. 1978 Turbulence and mixing in stably stratified waters. Annu. Rev. Fluid Mech. 10, 267288.
Shishkina, O., Stevens, R. J. A. M., Grossmann, S. & Lohse, D. 2010 Boundary layer structure in turbulent thermal convection and its consequences for the required numerical resolution. New J. Phys. 12 (7), 075022.
Smyth, W. D. & Moum, J. N. 2000a Anisotropy of turbulence in stably stratified mixing layers. Phys. Fluids 12 (6), 13431362.
Smyth, W. D. & Moum, J. N. 2000b Length scales of turbulence in stably stratified mixing layers. Phys. Fluids 12, 13271342.
Sorbjan, Z. 2005 Statistics of scalar fields in the atmospheric boundary layer based on large-eddy simulations. Part 1. Free convection. Boundary-Layer Meteorol. 116, 467486.
Sorbjan, Z. 2006 Statistics of scalar fields in the atmospheric boundary layer based on large-eddy simulations. Part II. Forced convection. Boundary-Layer Meteorol. 119, 5779.
Spalart, P. R., Coleman, G. N. & Johnstone, R. 2008 Direct numerical simulation of the Ekman layer: a step in Reynolds number, and cautious support for a log law with a shifted origin. Phys. Fluids 20 (10), 101507.
Strang, E. J. & Fernando, H. J. S. 2001 Entrainment and mixing in stratified shear flows. J. Fluid Mech. 428, 349386.
Stull, R. B. 1988 An introduction to boundary layer meteorology. In Interactive Dynamics of Convection and Solidification (ed. Stull, R. B.), pp. 113138. Kluwer.
Sullivan, P. P., Moeng, C. H., Stevens, B., Lenschow, D. H. & Mayor, S. D. 1998 Structure of the entrainment zone capping the convective atmospheric boundary layer. J. Atmos. Sci. 55, 30423064.
Waggy, S. B., Biringen, S. & Sullivan, P. P. 2013 Direct numerical simulation of top-down and bottom-up diffusion in the convective boundary layer. J. Fluid Mech. 724, 581606.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed