Hostname: page-component-cb9f654ff-5jtmz Total loading time: 0 Render date: 2025-08-30T12:03:05.482Z Has data issue: false hasContentIssue false

Chemistry similarity in turbulent hypersonic boundary layers

Published online by Cambridge University Press:  11 August 2025

Donatella Passiatore*
Affiliation:
Department of Engineering for Innovation, Universitá del Salento, Lecce, Italy
Mario Di Renzo
Affiliation:
Department of Engineering for Innovation, Universitá del Salento, Lecce, Italy
*
Corresponding author: Donatella Passiatore, donatella.passiatore@unisalento.it

Abstract

This study examines the similarity properties of hypersonic turbulent boundary layers using direct numerical simulations within a two-species mixture, composed of molecular and atomic oxygen. A dissociation–recombination mechanism is considered, at varying reaction rates. The results show that while the hydrodynamic field remains largely unaffected by changes in reaction rates, temperature profiles are slightly altered, with faster reactions leading to lower temperature peaks. The chemical mechanisms significantly influence the wall heat flux, with frozen chemistry overestimating the flux. The reference simulations are compared with companion calculations, where chemical reactions are activated downstream within the fully turbulent region. These calculations represent set-ups in which the computational domain effectively starts with an inflow in a fully turbulent state, where hydrodynamic and thermal quantities are accurately described at the boundary and the chemical inflow profile is derived from a frozen-chemistry assumption. In this set-up, chemical source terms rapidly relax towards the baseline downstream of the chemistry activation location. This behaviour is due to an approximate global self-similarity shown by the chemical species transport in the fully turbulent region. Unlike laminar boundary layers where streamwise fluxes are relevant, source terms are balanced only by wall-normal transport in the turbulent region. A chemical relaxation length scale is introduced to collapse the results of all mechanisms.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Anderson, J.D. 2006 Hypersonic and High Temperature Gas Dynamics. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Bauer, M., Treichler, S., Slaughter, E. & Aiken, A. 2012 Legion: Expressing locality and independence with logical regions. In SC’12: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, pp. 111. IEEE.10.1109/SC.2012.71CrossRefGoogle Scholar
Bertin, J.J. & Cummings, R.M. 2006 Critical hypersonic aerothermodynamic phenomena. Annu. Rev. Fluid Mech. 38 (1), 129157.10.1146/annurev.fluid.38.050304.092041CrossRefGoogle Scholar
Candler, G. 2019 Rate effects in hypersonic flows. Annu. Rev. Fluid Mech. 51 (1), 379402.CrossRefGoogle Scholar
Ceci, A., Palumbo, A., Larsson, J. & Pirozzoli, S. 2022 Numerical tripping of high-speed turbulent boundary layers. Theor. Comput. Fluid Dyn. 36 (6), 865886.10.1007/s00162-022-00623-0CrossRefGoogle Scholar
Chen, X., Hussain, F. & She, Z.-S. 2019 Non-universal scaling transition of momentum cascade in wall turbulence. J. Fluid Mech. 871, R2.10.1017/jfm.2019.309CrossRefGoogle Scholar
Cogo, M., Baù, U., Chinappi, M., Bernardini, M. & Picano, F. 2023 Assessment of heat transfer and Mach number effects on high-speed turbulent boundary layers. J. Fluid Mech. 974, A10.CrossRefGoogle Scholar
Cogo, M., Salvadore, F., Picano, F. & Bernardini, M. 2022 Direct numerical simulation of supersonic and hypersonic turbulent boundary layers at moderate-high Reynolds numbers and isothermal wall condition. J. Fluid Mech. 945, A30.10.1017/jfm.2022.574CrossRefGoogle Scholar
Di Renzo, M. 2022 HTR-1.3 solver: predicting electrified combustion using the hypersonic task-based research solver. Comput. Phys. Commun. 272, 108247.10.1016/j.cpc.2021.108247CrossRefGoogle Scholar
Di Renzo, M., Fu, L. & Urzay, J. 2020 HTR solver: an open-source exascale-oriented task-based multi-GPU high-order code for hypersonic aerothermodynamics. Comput. Phys. Commun. 255, 107262.CrossRefGoogle Scholar
Di Renzo, M. & Pirozzoli, S. 2021 HTR-1.2 solver: hypersonic task-based research solver version 1.2. Comput. Phys. Commun. 261, 107733.10.1016/j.cpc.2020.107733CrossRefGoogle Scholar
Di Renzo, M. & Urzay, J. 2019 An a priori study of the accuracy of an equilibrium wall model for dissociating air in supersonic channel flows. In Annual Research Briefs, pp. 2940. Center for Turbulence Research.Google Scholar
Di Renzo, M. & Urzay, J. 2021 Direct numerical simulation of a hypersonic transitional boundary layer at suborbital enthalpies. J. Fluid Mech. 912, A29.CrossRefGoogle Scholar
Di Renzo, M., Williams, C.T. & Pirozzoli, S. 2024 Stagnation enthalpy effects on hypersonic turbulent compression corner flow at moderate Reynolds numbers. Phys. Rev. Fluids 9 (3), 033401.10.1103/PhysRevFluids.9.033401CrossRefGoogle Scholar
Duan, L. & Martín, M.P. 2011 Assessment of turbulence-chemistry interaction in hypersonic turbulent boundary layers. AIAA J. 49 (1), 172184.10.2514/1.J050605CrossRefGoogle Scholar
Franko, K.J. & Lele, S.K. 2013 Breakdown mechanisms and heat transfer overshoot in hypersonic zero pressure gradient boundary layers. J. Fluid Mech. 730, 491532.CrossRefGoogle Scholar
Fu, L., Hu, X.Y. & Adams, N.A. 2016 A family of high-order targeted eno schemes for compressible-fluid simulations. J. Comput. Phys. 305, 333359.10.1016/j.jcp.2015.10.037CrossRefGoogle Scholar
Gibis, T., Sciacovelli, L., Kloker, M. & Wenzel, C. 2024 Heat-transfer effects in compressible turbulent boundary layers – a regime diagram. J. Fluid Mech. 995, A14.10.1017/jfm.2024.622CrossRefGoogle Scholar
Gottlieb, S., Shu, C.-W. & Tadmor, E. 2001 Strong stability-preserving high-order time discretization methods. SIAM Rev. 43 (1), 89112.10.1137/S003614450036757XCrossRefGoogle Scholar
Griffin, K.P., Fu, L. & Moin, P. 2021 Velocity transformation for compressible wall-bounded turbulent flows with and without heat transfer. Proc. Natl Acad. Sci. USA 118 (134).10.1073/pnas.2111144118CrossRefGoogle ScholarPubMed
Hasan, A.M., Larsson, J., Pirozzoli, S. & Pecnik, R. 2023 Incorporating intrinsic compressibility effects in velocity transformations for wall-bounded turbulent flows. Phys. Rev. Fluids 8 (11), L112601.CrossRefGoogle Scholar
Hasan, A.M., Larsson, J., Pirozzoli, S. & Pecnik, R. 2024 Estimating mean profiles and fluxes in high-speed turbulent boundary layers using inner/outer-layer scalings. AIAA J. 62 (2), 848853.CrossRefGoogle Scholar
Huang, J., Duan, L. & Choudhari, M.M. 2022 Direct numerical simulation of hypersonic turbulent boundary layers: effect of spatial evolution and reynolds number. J. Fluid Mech. 937, A3.10.1017/jfm.2022.80CrossRefGoogle Scholar
Huang, J., Nicholson, G.L., Duan, L., Choudhari, M.M. & Bowersox, R.D. 2020 Simulation and modeling of cold-wall hypersonic turbulent boundary layers on flat plate. In AIAA Scitech 2020 Forum, pp. 0571. American Institute of Aeronautics and Astronautics (AIAA).10.2514/6.2020-0571CrossRefGoogle Scholar
Hudson, M.L., Chokani, N. & Candler, G. 1997 Linear stability of hypersonic flow in thermochemical nonequilibrium. AIAA J. 35 (6), 958964.10.2514/2.204CrossRefGoogle Scholar
Kline, H.L., Chang, C.-L. & Li, F. 2019 Multiple boundary layer instability modes with nonequilibrium and wall temperature effects using lastrac. In AIAA Aviation 2019 Forum, pp. 2850. American Institute of Aeronautics and Astronautics (AIAA).CrossRefGoogle Scholar
Li, J.Y., Yu, M., Sun, D., Liu, P.X. & Yuan, X.X. 2022 Wall heat transfer in high-enthalpy hypersonic turbulent boundary layers. Phys. Fluids 34 (8), 085102.10.1063/5.0100416CrossRefGoogle Scholar
Liñán, A. & Da Riva, I. 1962 Chemical nonequilibrium effects in hypersonic aerodynamics. In 3rd International ICAS Congress, Stockholm. International Council of the Aeronatuical Sciences.Google Scholar
Malik, M.R. & Anderson, E.C. 1991 Real gas effects on hypersonic boundary-layer stability. Phys. Fluids A: Fluid Dyn. 3 (5), 803821.10.1063/1.858012CrossRefGoogle Scholar
Marxen, O., Iaccarino, G. & Magin, T.E. 2014 Direct numerical simulations of hypersonic boundary-layer transition with finite-rate chemistry. J. Fluid Mech. 755, 3549.10.1017/jfm.2014.344CrossRefGoogle Scholar
McBride, B.J., Zehe, M.J. & Gordon, S. 2002 NASA glenn coefficients for calculating thermodynamic properties of individual species. NASA/TP-2002-211556. National Aeronautics and Space Administration (NASA).Google Scholar
Morkovin, M.V. 1962 Effects of compressibility on turbulent flows. Mécanique de la Turbulence 367380, 26. CNRS Paris.Google Scholar
Mortensen, C. 2015 Effects of thermochemical nonequilibrium on hypersonic boundary-layer instability in the presence of surface ablation or isolated two-dimensional roughness. PhD thesis, UCLA, USA.Google Scholar
Okong’o, N. & Bellan, J. 2002 Consistent boundary conditions for multicomponent real gas mixtures based on characteristic waves. J. Comput. Phys. 176 (2), 330344.CrossRefGoogle Scholar
Park, C. 1989 A review of reaction rates in high temperature air. In Proc. 24th AIAA Thermophysics Conference, AIAA Paper 1989–1740. American Institute of Aeronautics and Astronautics (AIAA).10.2514/6.1989-1740CrossRefGoogle Scholar
Passiatore, D. & Di Renzo, M. 2023 In Similarity of dissociation-recombination phenomena in laminar hypersonic boundary layers. In Annual Research Briefs, pp. 147157. Center for Turbulence Research.Google Scholar
Passiatore, D., Gloerfelt, X., Sciacovelli, L., Pascazio, G. & Cinnella, P. 2024 Direct numerical simulation of subharmonic second-mode breakdown in hypersonic boundary layers with finite-rate chemistry. Intl J. Heat Fluid Flow 109, 109505.10.1016/j.ijheatfluidflow.2024.109505CrossRefGoogle Scholar
Passiatore, D., Sciacovelli, L., Cinnella, P. & Pascazio, G. 2021 Finite-rate chemistry effects in turbulent hypersonic boundary layers: a direct numerical simulation study. Phys. Rev. Fluids 6 (5), 054604.CrossRefGoogle Scholar
Passiatore, D., Sciacovelli, L., Cinnella, P. & Pascazio, G. 2022 Thermochemical non-equilibrium effects in turbulent hypersonic boundary layers. J. Fluid Mech. 941, A21.10.1017/jfm.2022.283CrossRefGoogle Scholar
Perraud, J., Arnal, D., Dussillols, L. & Thivet, F. 1999 Studies of laminar-turbulent transition in hypersonic boundary layers at ONERA. In Aerothermodynamics for Space Vehicles, vol. 426, pp. 309. ESA Publications Division, ESTEC (European Space Agency).Google Scholar
Pirozzoli, S. 2010 Generalized conservative approximations of split convective derivative operators. J. Comput. Phys. 229 (19), 71807190.CrossRefGoogle Scholar
Poinsot, T. & Lele, S.K. 1992 Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101 (1), 104129.CrossRefGoogle Scholar
Sciacovelli, L., Cannici, A., Passiatore, D. & Cinnella, P. 2024 A priori tests of turbulence models for compressible flows. Intl J. Numer. Meth. Heat Fluid Flow 34 (7), 28082831.10.1108/HFF-09-2023-0551CrossRefGoogle Scholar
Slaughter, E., Lee, W., Treichler, S., Bauer, M. & Aiken, A. 2015 Regent: a high-productivity programming language for hpc with logical regions. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 112. Association for Computing Machinery (ACM).CrossRefGoogle Scholar
Trettel, A. & Larsson, J. 2016 Mean velocity scaling for compressible wall turbulence with heat transfer. Phys. Fluids 28 (2), 026102.10.1063/1.4942022CrossRefGoogle Scholar
Urzay, J. & Di Renzo, M. 2021 Engineering aspects of hypersonic turbulent flows at suborbital enthalpies. In Annual Research Briefs, pp. 732. Center for Turbulence Research.Google Scholar
Van Driest, E.R. 1951 Turbulent boundary layer in compressible fluids. J. Aeronaut. Sci. 18 (3), 145160.10.2514/8.1895CrossRefGoogle Scholar
Volpiani, P.S., Iyer, P.S., Pirozzoli, S. & Larsson, J. 2020 Data-driven compressibility transformation for turbulent wall layers. Phys. Rev. Fluids 5 (5), 052602.10.1103/PhysRevFluids.5.052602CrossRefGoogle Scholar
Wenzel, C., Gibis, T. & Kloker, M. 2022 About the influences of compressibility, heat transfer and pressure gradients in compressible turbulent boundary layers. J. Fluid Mech. 930, A1.10.1017/jfm.2021.888CrossRefGoogle Scholar
Williams, C.T., Di Renzo, M. & Moin, P. 2022 Computational framework for direct numerical simulation of shock- turbulence interaction in thermochemical nonequilibrium. In Annual Research Briefs, pp. 203216. Center for Turbulence Research, Stanford University.Google Scholar
Williams, C.T., Di Renzo, M. & Moin, P. 2024 Statistical Decomposition of Turbulence-Chemistry Interactions in a Hypersonic Boundary Layer. In Annual Research Briefs, pp. 7992. Center for Turbulence Research.Google Scholar
Williams, C.T., Di Renzo, M. & Moin, P. 2025 Turbulence-chemistry interaction in a non-equilibrium hypersonic boundary layer. J. Fluid Mech. (Accepted for publication).Google Scholar
Xu, D., Wang, J. & Chen, S. 2023 Reynolds number and wall cooling effects on correlations between the thermodynamic variables in hypersonic turbulent boundary layers. J. Fluid Mech. 965, A4.10.1017/jfm.2023.365CrossRefGoogle Scholar
Xu, D., Wang, J., Wan, M., Yu, C., Li, X. & Chen, S. 2021 Compressibility effect in hypersonic boundary layer with isothermal wall condition. Phys. Rev. Fluids 6 (5), 054609.CrossRefGoogle Scholar
Zhang, Y.-S., Bi, W.-T., Hussain, F. & She, Z.-S. 2014 A generalized Reynolds analogy for compressible wall-bounded turbulent flows. J. Fluid Mech. 739, 392420.10.1017/jfm.2013.620CrossRefGoogle Scholar