Skip to main content
×
Home
    • Aa
    • Aa

Choked flows in open capillary channels: theory, experiment and computations

  • UWE ROSENDAHL (a1), ANTJE OHLHOFF (a1) and MICHAEL E. DREYER (a1)
Abstract

This paper is concerned with flow-rate limitations in open capillary channels under low-gravity conditions. The channels consist of two parallel plates bounded by free liquid surfaces along the open sides. In the case of steady flow the capillary pressure of the free surface balances the differential pressure between the liquid and the surrounding constant-pressure gas phase. A maximum flow rate is achieved when the adjusted volumetric flow rate exceeds a certain limit leading to a collapse of the free surfaces.

In this study the steady one-dimensional momentum equation is solved numerically for perfectly wetting incompressible liquids to determine important characteristics of the flow, such as the free-surface shape and limiting volumetric flow rate. Using the ratio of the mean liquid velocity and the longitudinal small-amplitude wave speed a local capillary speed index $S_{ca}$ is introduced. A reformulation of the momentum equation in terms of this speed index illustrates that the volumetric flow rate is limited. The maximum flow rate is reached if $S_{ca}\,{=}\,1$ locally, a phenomenon called choking in compressible flows. Experiments with perfectly wetting liquids in the low-gravity environment of a drop tower and aboard a sounding rocket are presented where the flow rate is increased in a quasi-steady manner up to the maximum value. The experimental results are in very good agreement with the numerical predictions. Furthermore, the influence of the $S_{ca}$ on the flow-rate limit is confirmed.

Copyright
Corresponding author
Author to whom correspondence should be addressed: dreyer@zarm.uni-bremen.de
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 24 *
Loading metrics...

Abstract views

Total abstract views: 97 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th September 2017. This data will be updated every 24 hours.