Skip to main content Accessibility help
×
×
Home

Clustering and increased settling speed of oblate particles at finite Reynolds number

  • Walter Fornari (a1), Mehdi Niazi Ardekani (a1) and Luca Brandt (a1)
Abstract

We study the settling of rigid oblates in a quiescent fluid using interface-resolved direct numerical simulations. In particular, an immersed boundary method is used to account for the dispersed solid phase together with lubrication correction and collision models to account for short-range particle–particle interactions. We consider semi-dilute suspensions of oblate particles with aspect ratio $AR=1/3$ and solid volume fractions $\unicode[STIX]{x1D719}=0.5{-}10\,\%$ . The solid-to-fluid density ratio $R=1.02$ and the Galileo number (i.e. the ratio between buoyancy and viscous forces) based on the diameter of a sphere with equivalent volume $Ga=60$ . With this choice of parameters, an isolated oblate falls vertically with a steady wake with its broad side perpendicular to the gravity direction. At this $Ga$ , the mean settling speed of spheres is a decreasing function of the volume $\unicode[STIX]{x1D719}$ and is always smaller than the terminal velocity of the isolated particle, $V_{t}$ . On the contrary, in dilute suspensions of oblate particles (with $\unicode[STIX]{x1D719}\leqslant 1\,\%$ ), the mean settling speed is approximately 33 % larger than $V_{t}$ . At higher concentrations, the mean settling speed decreases becoming smaller than the terminal velocity $V_{t}$ between $\unicode[STIX]{x1D719}=5\,\%$ and 10 %. The increase of the mean settling speed is due to the formation of particle clusters that for $\unicode[STIX]{x1D719}=0.5{-}1\,\%$ appear as columnar-like structures. From the pair distribution function we observe that it is most probable to find particle pairs almost vertically aligned. However, the pair distribution function is non-negligible all around the reference particle indicating that there is a substantial amount of clustering at radial distances between 2 and $6c$ (with $c$ the polar radius of the oblate). Above $\unicode[STIX]{x1D719}=5\,\%$ , the hindrance becomes the dominant effect, and the mean settling speed decreases below $V_{t}$ . As the particle concentration increases, the mean particle orientation changes and the mean pitch angle (the angle between the particle axis of symmetry and gravity) increases from $23^{\circ }$ to $47^{\circ }$ . Finally, we increase $Ga$ from 60 to 140 for the case with $\unicode[STIX]{x1D719}=0.5\,\%$ and find that the mean settling speed (normalized by $V_{t}$ ) decreases by less than 1 % with respect to $Ga=60$ . However, the fluctuations of the settling speed around the mean are reduced and the probability of finding vertically aligned particle pairs increases.

Copyright
Corresponding author
Email address for correspondence: fornari@mech.kth.se
References
Hide All
Ardekani, M. N., Costa, P., Breugem, W. P. & Brandt, L. 2016 Numerical study of the sedimentation of spheroidal particles. Intl J. Multiphase Flow 87, 1634.
Batchelor, G. K. 1972 Sedimentation in a dilute dispersion of spheres. J. Fluid Mech. 52 (02), 245268.
Bouchet, G., Mebarek, M. & Dušek, J. 2006 Hydrodynamic forces acting on a rigid fixed sphere in early transitional regimes. Eur. J. Mech. (B/Fluids) 25 (3), 321336.
Breugem, W.-P. 2012 A second-order accurate immersed boundary method for fully resolved simulations of particle-laden flows. J. Comput. Phys. 231 (13), 44694498.
Brosse, N. & Ern, P. 2011 Paths of stable configurations resulting from the interaction of two disks falling in tandem. J. Fluids Struct. 27 (5), 817823.
Chouippe, A. & Uhlmann, M. 2015 Forcing homogeneous turbulence in direct numerical simulation of particulate flow with interface resolution and gravity. Phys. Fluids 27 (12), 123301.
Chrust, M.2012 Etude numérique de la chute libre d’objets axisymétriques dans un fluide Newtonien. PhD thesis, Strasbourg.
Clift, R., Grace, J. R. & Weber, M. E. 2005 Bubbles, Drops, and Particles. Courier Corporation.
Climent, E. & Maxey, M. R. 2003 Numerical simulations of random suspensions at finite Reynolds numbers. Intl J. Multiphase Flow 29 (4), 579601.
Costa, P., Boersma, B. J., Westerweel, J. & Breugem, W.-P. 2015 Collision model for fully resolved simulations of flows laden with finite-size particles. Phys. Rev. E 92 (5), 053012.
Di Felice, R. 1999 The sedimentation velocity of dilute suspensions of nearly monosized spheres. Intl J. Multiphase Flow 25 (4), 559574.
Doostmohammadi, A. & Ardekani, A. M. 2015 Suspension of solid particles in a density stratified fluid. Phys. Fluids 27 (2), 023302.
Ern, P., Risso, F., Fabre, D. & Magnaudet, J. 2012 Wake-induced oscillatory paths of bodies freely rising or falling in fluids. Annu. Rev. Fluid Mech. 44, 97121.
Feng, J., Hu, H. H. & Joseph, D. D. 1994 Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid part 1. Sedimentation. J. Fluid Mech. 261, 95134.
Fonseca, F. & Herrmann, H. J. 2005 Simulation of the sedimentation of a falling oblate ellipsoid. Physica A 345 (3), 341355.
Fornari, W., Picano, F. & Brandt, L. 2016a Sedimentation of finite-size spheres in quiescent and turbulent environments. J. Fluid Mech. 788, 640669.
Fornari, W., Picano, F., Sardina, G. & Brandt, L. 2016b Reduced particle settling speed in turbulence. J. Fluid Mech. 808, 153167.
Fortes, A. F., Joseph, D. D. & Lundgren, T. S. 1987 Nonlinear mechanics of fluidization of beds of spherical particles. J. Fluid Mech. 177, 467483.
Garside, J. & Al-Dibouni, M. R. 1977 Velocity-voidage relationships for fluidization and sedimentation in solid–liquid systems. Ind. Engng Chem. Process Design and Development 16 (2), 206214.
Guazzelli, E. & Morris, J. F. 2011 A Physical Introduction to Suspension Dynamics. Cambridge University Press.
Hasimoto, H. 1959 On the periodic fundamental solutions of the stokes equations and their application to viscous flow past a cubic array of spheres. J. Fluid Mech. 5 (02), 317328.
Horowitz, M. & Williamson, C. H. K. 2010 The effect of Reynolds number on the dynamics and wakes of freely rising and falling spheres. J. Fluid Mech. 651, 251294.
Huisman, S. G., Barois, T., Bourgoin, M., Chouippe, A., Doychev, T., Huck, P., Morales, C. E. B., Uhlmann, M. & Volk, R. 2016 Columnar structure formation of a dilute suspension of settling spherical particles in a quiescent fluid. Phys. Rev. Fluids 1 (7), 074204.
Jeffrey, D. J. 1982 Low-Reynolds-number flow between converging spheres. Mathematika 29 (1), 5866.
Jenny, M., Dušek, J. & Bouchet, G. 2004 Instabilities and transition of a sphere falling or ascending freely in a Newtonian fluid. J. Fluid Mech. 508, 201239.
Kulkarni, P. M. & Morris, J. F. 2008 Suspension properties at finite Reynolds number from simulated shear flow. Phys. Fluids 20 (4), 040602.
Kuusela, E., Höfler, K. A. I. & Schwarzer, S. 2001 Computation of particle settling speed and orientation distribution in suspensions of prolate spheroids. J. Engng Maths 41 (2), 221235.
Lambert, R. A., Picano, F., Breugem, W.-P. & Brandt, L. 2013 Active suspensions in thin films: nutrient uptake and swimmer motion. J. Fluid Mech. 733, 528557.
Magnaudet, J. & Mougin, G. 2007 Wake instability of a fixed spheroidal bubble. J. Fluid Mech. 572, 311337.
Picano, F., Breugem, W.-P. & Brandt, L. 2015 Turbulent channel flow of dense suspensions of neutrally buoyant spheres. J. Fluid Mech. 764, 463487.
Richardson, J. & Zaki, W. 1954a Fluidization and sedimentation–part i. Trans. Inst. Chem. Engrs 32, 3858.
Richardson, J. F. & Zaki, W. N. 1954b The sedimentation of a suspension of uniform spheres under conditions of viscous flow. Chem. Engng Sci. 3 (2), 6573.
Saintillan, D., Shaqfeh, E. S. G. & Darve, E. 2006 The growth of concentration fluctuations in dilute dispersions of orientable and deformable particles under sedimentation. J. Fluid Mech. 553, 347388.
Sangani, A. S. & Acrivos, A. 1982 Slow flow past periodic arrays of cylinders with application to heat transfer. Intl J. Multiphase Flow 8 (3), 193206.
Santarelli, C. & Fröhlich, J. 2015 Direct numerical simulations of spherical bubbles in vertical turbulent channel flow. Intl J. Multiphase Flow 75, 174193.
Santarelli, C. & Fröhlich, J. 2016 Direct numerical simulations of spherical bubbles in vertical turbulent channel flow. Influence of bubble size and bidispersity. Intl J. Multiphase Flow 81, 2745.
Schiller, L. & Naumann, A. 1935 A drag coefficient correlation. Vdi Zeitung 77, 318320.
Shin, M., Koch, D. L. & Subramanian, G. 2009 Structure and dynamics of dilute suspensions of finite-Reynolds-number settling fibers. Phys. Fluids 21 (12), 123304.
Tanaka, M. & Teramoto, D. 2015 Modulation of homogeneous shear turbulence laden with finite-size particles. J. Turbul. 16 (10), 9791010.
Uhlmann, M. & Doychev, T. 2014 Sedimentation of a dilute suspension of rigid spheres at intermediate galileo numbers: the effect of clustering upon the particle motion. J. Fluid Mech. 752, 310348.
Yin, X. & Koch, D. L. 2007 Hindered settling velocity and microstructure in suspensions of solid spheres with moderate Reynolds numbers. Phys. Fluids 19 (9), 093302.
Zaidi, A. A., Tsuji, T. & Tanaka, T. 2014 Direct numerical simulation of finite sized particles settling for high Reynolds number and dilute suspension. Intl J. Heat Fluid Flow 50, 330341.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed