Skip to main content Accessibility help
×
Home

The clustering morphology of freely rising deformable bubbles

  • Yoshiyuki Tagawa (a1) (a2), Ivo Roghair (a3), Vivek N. Prakash (a1), Martin van Sint Annaland (a3), Hans Kuipers (a3), Chao Sun (a1) and Detlef Lohse (a1)...

Abstract

We investigate the clustering morphology of a swarm of freely rising deformable bubbles. A three-dimensional Voronoï analysis enables us to distinguish quantitatively between two typical preferential clustering configurations: a regular lattice arrangement and irregular clustering. The bubble data are obtained from direct numerical simulations using the front-tracking method. It is found that the bubble deformation, represented by the aspect ratio $\chi $ , plays a significant role in determining which type of clustering is realized: nearly spherical bubbles form a regular lattice arrangement, while more deformed bubbles show irregular clustering. Remarkably, this criterion for the clustering morphology holds for different diameters of the bubbles, surface tensions and viscosities of the liquid in the studied parameter regime. The mechanism of this clustering behaviour is most likely connected to the amount of vorticity generated at the bubble surfaces.

Copyright

Corresponding author

Email addresses for correspondence: tagawayo@cc.tuat.ac.jp, c.sun@utwente.nl, d.lohse@utwente.nl

References

Hide All
Beetstra, R. 2005 Drag force in random arrays of mono- and bidisperse spheres. PhD thesis, University of Twente.
Bunner, B. & Tryggvason, G. 2002 Dynamics of homogeneous bubbly flows. Part 2. Velocity fluctuations. J. Fluid Mech. 466, 1752.
Bunner, B. & Tryggvason, G. 2003 Effect of bubble deformation on the properties of bubbly flows. J. Fluid Mech. 495, 77118.
Calzavarini, E., Kerscher, M., Lohse, D. & Toschi, F. 2008 Dimensionality and morphology of particle and bubble clusters in turbulent flow. J. Fluid Mech. 607, 1324.
Cartellier, A., Andreotti, M. & Sechet, P. 2009 Induced agitation in homogeneous bubbly flows at moderate particle Reynolds number. Phys. Rev. E 80, 065301.
Cartellier, A. & Rivière, N. 2001 Bubble-induced agitation and microstructure in uniform bubbly flows at small to moderate particle Reynolds numbers. Phys. Fluids 13, 21652181.
Deen, N. G., Mudde, R. F., Kuipers, J. A. M., Zehner, P. & Kraume, M. 2000 Ullmanns encyclopedia of industrial chemistry, chapter bubble columns., Wiley-VCH Verlag GmbH & Co. KGaA.
Deen, N. G., van Sint Annaland, M. & Kuipers, J. A. M. 2004 Multi-scale modelling of dispersed gas–liquid two-phase flow. Chem. Engng Sci. 59, 18531861.
Dijkhuizen, W., Roghair, I., van Sint Annaland, M. & Kuipers, J. A. M. 2010 DNS of gas bubbles behaviour using an improved 3D front tracking model – drag force on isolated bubbles and comparison with experiments. Chem. Engng Sci. 65, 14271437.
Ferenc, J. S. & Néda, Z. 2007 On the size distribution of Poisson Voronoi cells. Physica A: Stat. Mech. Appl. 385, 518526.
Fiabane, L., Zimmermann, R., Volk, R., Pinton, J.-F. & Bourgoin, M. 2012 Clustering of finite-size particles in turbulence. Phys. Rev. E 86, 035301.
Frenkel, D. & Smit, B. 2002 Understanding Molecular Simulation: From Algorithms to Applications. Academic Press.
Magnaudet, J. & Mougin, G. 2007 Wake instability of a fixed spheroidal bubble. J. Fluid Mech. 572, 311337.
Martínez Mercado, J., Chehata-Gómez, D., van Gils, D. P. M., Sun, C. & Lohse, D. 2010 On bubble clustering and energy spectra in pseudo-turbulence. J. Fluid Mech. 650, 287306.
Monchaux, R., Bourgoin, M. & Cartellier, A. 2010 Preferential concentration of heavy particles: a Voronoï analysis. Phys. Fluids 22, 103304.
Okabe, A., Boots, B., Sugihara, K. & Chiu, S. N. 2000 Spatial Tessellations. Wiley.
Riboux, G., Risso, F. & Legendre, D. 2010 Experimental characterization of the agitation generated by bubbles rising at high Reynolds number. J. Fluid Mech. 643, 509539.
Roghair, I., van Sint Annaland, M. & Kuipers, J. A. M. 2012b Drag force and clustering in bubble swarms, AIChE J. (early view) doi:10.1002/aic.13949.
Roghair, I., Lau, Y. M., Deen, N. G., Slagter, H. M., Baltussen, M. W., van Sint Annaland, M. & Kuipers, J. A. M. 2011a On the drag force of bubbles in bubble swarms at intermediate and high Reynolds numbers. Chem. Engng Sci. 66, 32043211.
Roghair, I., Martínez Mercado, J., van Sint Annaland, M., Kuipers, J. A. M., Sun, C. & Lohse, D. 2011 Energy spectra and bubble velocity distributions in pseudo-turbulence: numerical simulations vs. experiments. Intl J. Multiphase Flow 37, 10931098.
Tagawa, Y., Mercado, J. M., Prakash, V. N., Calzavarini, E., Sun, C. & Lohse, D. 2012 Three-dimensional Lagrangian Voronoï analysis for clustering of particles and bubbles in turbulence. J. Fluid Mech. 693, 201215.
Toschi, F. & Bodenschatz, E. 2009 Lagrangian properties of particles in turbulence. Annu. Rev. Fluid Mech. 41, 375404.
Unverdi, S. O. & Tryggvason, G. 1992 A front-tracking method for viscous, incompressible, multi-fluid flows. J. Comput. Phys. 100, 2537.
Yin, X. & Koch, D. L. 2008 Lattice–Boltzmann simulation of finite Reynolds number buoyancy-driven bubbly flows in periodic and wall-bounded domains. Phys. Fluids 20, 103304.
Zenit, R., Koch, D. L. & Sangani, A. S. 2001 Measurements of the average properties of a suspension of bubbles rising in a vertical channel. J. Fluid Mech. 429, 307342.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Related content

Powered by UNSILO

The clustering morphology of freely rising deformable bubbles

  • Yoshiyuki Tagawa (a1) (a2), Ivo Roghair (a3), Vivek N. Prakash (a1), Martin van Sint Annaland (a3), Hans Kuipers (a3), Chao Sun (a1) and Detlef Lohse (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.