Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T14:04:23.029Z Has data issue: false hasContentIssue false

CO2 migration in saline aquifers. Part 1. Capillary trapping under slope and groundwater flow

Published online by Cambridge University Press:  28 September 2010

C. W. MACMINN
Affiliation:
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
M. L. SZULCZEWSKI
Affiliation:
Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
R. JUANES*
Affiliation:
Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
*
Email address for correspondence: juanes@mit.edu

Abstract

Injection of carbon dioxide (CO2) into geological formations is widely regarded as a promising tool for reducing global atmospheric CO2 emissions. To evaluate injection scenarios, estimate reservoir capacity and assess leakage risks, an accurate understanding of the subsurface spreading and migration of the plume of mobile CO2 is essential. Here, we present a complete solution to a theoretical model for the subsurface migration of a plume of CO2 due to natural groundwater flow and aquifer slope, and subject to residual trapping. The results show that the interplay of these effects leads to non-trivial behaviour in terms of trapping efficiency. The analytical nature of the solution offers insight into the physics of CO2 migration, and allows for rapid, basin-specific capacity estimation. We use the solution to explore the parameter space via the storage efficiency, a macroscopic measure of plume migration. In a future study, we shall incorporate CO2 dissolution into the migration model and study the importance of dissolution relative to capillary trapping and the impact of dissolution on the storage efficiency.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bachu, S., Bonijoly, D., Bradshaw, J., Burruss, R., Holloway, S., Christensen, N. P. & Mathiassen, O. M. 2007 CO2 storage capacity estimation: methodology and gaps. Intl J. Greenhouse Gas Control 1 (4), 430443.CrossRefGoogle Scholar
Bachu, S., Gunter, W. D. & Perkins, E. H. 1994 Aquifer disposal of CO2: hydrodynamic and mineral trapping. Energy Convers. Manage. 35 (4), 269279.CrossRefGoogle Scholar
Barenblatt, G. I., Entov, V. M. & Ryzhik, V. M. 1972 Theory of Non-Steady Filtration of Fluids and Gases. Nedra.Google Scholar
Bear, J. 1972 Dynamics of Fluids in Porous Media. Elsevier (reprinted with corrections, Dover, 1988).Google Scholar
Dussan V, E. B. & Auzerais, F. M. 1993 Buoyancy-induced flow in porous media generated near a drilled oil well. Part 1. The accumulation of filtrate at a horizontal impermeable boundary. J. Fluid Mech. 254, 283311.CrossRefGoogle Scholar
Ennis-King, J. & Paterson, L. 2005 Role of convective mixing in the long-term storage of carbon dioxide in deep saline formations. Soc. Pet. Engng J. 10 (3), 349356.Google Scholar
Farcas, A. & Woods, A. W. 2009 The effect of drainage on the capillary retention of CO2 in a layered permeable rock. J. Fluid Mech. 618, 349359.CrossRefGoogle Scholar
Garven, G. 1995 Continental-scale groundwater flow and geologic processes. Annu. Rev. Earth Planet. Sci. 23, 89117.CrossRefGoogle Scholar
Hesse, M. A., Orr, F. M. Jr & Tchelepi, H. A. 2008 Gravity currents with residual trapping. J. Fluid Mech. 611, 3560.CrossRefGoogle Scholar
Hesse, M. A., Tchelepi, H. A., Cantwell, B. J. & Orr, F. M. Jr 2007 Gravity currents in horizontal porous layers: transition from early to late self-similarity. J. Fluid Mech. 577, 363383.CrossRefGoogle Scholar
Hesse, M. A., Tchelepi, H. A. & Orr, F. M. Jr 2006 Scaling analysis of the migration of CO2 in saline aquifers. In SPE Annual Technical Conference and Exhibition (SPE 102796) San Antonio, TX.Google Scholar
Huppert, H. E. 1982 The propagation of two-dimensional and axisymmetric viscous gravity currents over a rigid horizontal surface. J. Fluid Mech. 121, 4358.CrossRefGoogle Scholar
Huppert, H. E. & Woods, A. W. 1995 Gravity-driven flows in porous layers. J. Fluid Mech. 292, 5569.CrossRefGoogle Scholar
Juanes, R. & MacMinn, C. W. 2008 Upscaling of capillary trapping under gravity override: application to CO2 sequestration in aquifers. In SPE/DOE Symposium on Improved Oil Recovery (SPE 113496), Tulsa, OK, USA.Google Scholar
Juanes, R., MacMinn, C. W. & Szulczewski, M. L. 2010 The footprint of the CO2 plume during carbon dioxide storage in saline aquifers: storage efficiency for capillary trapping at the basin scale. Transp. Porous Media 82 (1), 1930.CrossRefGoogle Scholar
Juanes, R., Spiteri, E. J., Orr, F. M. Jr & Blunt, M. J. 2006 Impact of relative permeability hysteresis on geological CO2 storage. Water Resour. Res. 42, W12418.CrossRefGoogle Scholar
Kochina, I. N., Mikhailov, N. N. & Filinov, M. V. 1983 Groundwater mound damping. Intl J. Engng Sci. 21 (4), 413421.Google Scholar
Kumar, A., Ozah, R., Noh, M., Pope, G. A., Bryant, S., Sepehrnoori, K. & Lake, L. W. 2005 Reservoir simulation of CO2 storage in deep saline aquifers. SPE J. 10 (3), 336348.CrossRefGoogle Scholar
Lackner, K. S. 2003 Climate change: a guide to CO2 sequestration. Science 300 (5626), 16771678.CrossRefGoogle ScholarPubMed
Lax, P. D. 1972 The formation and decay of shock waves. Amer. Math. Monthly 79 (3), 227241.CrossRefGoogle Scholar
MacMinn, C. W. & Juanes, R. 2009 Post-injection spreading and trapping of CO2 in saline aquifers: impact of the plume shape at the end of injection. Comput. Geosci. 13 (4), 483491.CrossRefGoogle Scholar
Nicot, J.-P. 2008 Evaluation of large-scale CO2 storage on fresh-water sections of aquifers: an example from the Texas Gulf Coast Basin. Intl J. Greenhouse Gas Control 2 (4), 582593.Google Scholar
Nordbotten, J. M. & Celia, M. A. 2006 Similarity solutions for fluid injection into confined aquifers. J. Fluid Mech. 561, 307327.CrossRefGoogle Scholar
Nordbotten, J. M., Celia, M. A. & Bachu, S. 2005 Injection and storage of CO2 in deep saline aquifers: analytical solution for CO2 plume evolution during injection. Transp. Porous Media 58 (3), 339360.CrossRefGoogle Scholar
Orr, F. M. Jr 2004 Storage of carbon dioxide in geological formations. J. Pet. Technol. (9), 90–97.Google Scholar
Pritchard, D. 2007 Gravity currents over fractured substrates in a porous medium. J. Fluid Mech. 584, 415431.CrossRefGoogle Scholar
Pruess, K. & García, J. 2002 Multiphase flow dynamics during CO2 disposal into saline aquifers. Environ. Geol. 42 (2–3), 282295.CrossRefGoogle Scholar
Riaz, A., Hesse, M., Tchelepi, H. A. & Orr, F. M. Jr 2006 Onset of convection in a gravitationally unstable diffusive boundary layer in porous media. J. Fluid Mech. 548, 87111.CrossRefGoogle Scholar
Schrag, D. P. 2007 Preparing to capture carbon. Science 315 (5813), 812813.CrossRefGoogle ScholarPubMed
Szulczewski, M. & Juanes, R. 2009 A simple but rigorous model for calculating CO2 storage capacity in deep saline aquifers at the basin scale. Energy Procedia (Proc. GHGT-9) 1 (1), 33073314.CrossRefGoogle Scholar
Verdon, J. & Woods, A. W. 2007 Gravity-driven reacting flows in a confined porous aquifer. J. Fluid Mech. 588, 2941.CrossRefGoogle Scholar
Woods, A. W. & Farcas, A. 2009 Capillary entry pressure and the leakage of gravity currents through a sloping layered permeable rock. J. Fluid Mech. 618, 361379.CrossRefGoogle Scholar
Yortsos, Y. C. 1995 A theoretical analysis of vertical flow equilibrium. Transp. Porous Media 18 (2), 107129.CrossRefGoogle Scholar