Skip to main content
    • Aa
    • Aa

Coalescence of liquid drops

  • JENS EGGERS (a1), JOHN R. LISTER (a2) and HOWARD A. STONE (a3)

When two drops of radius R touch, surface tension drives an initially singular motion which joins them into a bigger drop with smaller surface area. This motion is always viscously dominated at early times. We focus on the early-time behaviour of the radius rm of the small bridge between the two drops. The flow is driven by a highly curved meniscus of length 2πrm and width Δ[Lt ]rm around the bridge, from which we conclude that the leading-order problem is asymptotically equivalent to its two-dimensional counterpart. For the case of inviscid surroundings, an exact two-dimensional solution (Hopper 1990) shows that Δr3m and rm∼(tγ/πη) ln [tγ(ηR)]; and thus the same is true in three dimensions. We also study the case of coalescence with an external viscous fluid analytically and, for the case of equal viscosities, in detail numerically. A significantly different structure is found in which the outer-fluid forms a toroidal bubble of radius Δr3/2m at the meniscus and rm∼(tγ/4πη) ln [tγ/(ηR)]. This basic difference is due to the presence of the outer-fluid viscosity, however small. With lengths scaled by R a full description of the asymptotic flow for rm(t)[Lt ]1 involves matching of lengthscales of order r2m, r3/2m, rm, 1 and probably r7/4m.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 510 *
Loading metrics...

Abstract views

Total abstract views: 706 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st September 2017. This data will be updated every 24 hours.