Skip to main content
×
Home
    • Aa
    • Aa

Coherent structures and the saturation of a nonlinear dynamo

  • Erico L. Rempel (a1), Abraham C.-L. Chian (a1) (a2) (a3), Axel Brandenburg (a4) (a5), Pablo R. Muñoz (a1) and Shawn C. Shadden (a6)...
Abstract
Abstract

Eulerian and Lagrangian tools are used to detect coherent structures in the velocity and magnetic fields of a mean-field dynamo, produced by direct numerical simulations of the three-dimensional compressible magnetohydrodynamic equations with an isotropic helical forcing and moderate Reynolds number. Two distinct stages of the dynamo are studied: the kinematic stage, where a seed magnetic field undergoes exponential growth; and the saturated regime. It is shown that the Lagrangian analysis detects structures with greater detail, in addition to providing information on the chaotic mixing properties of the flow and the magnetic fields. The traditional way of detecting Lagrangian coherent structures using finite-time Lyapunov exponents is compared with a recently developed method called function $M$. The latter is shown to produce clearer pictures which readily permit the identification of hyperbolic regions in the magnetic field, where chaotic transport/dispersion of magnetic field lines is highly enhanced.

Copyright
Corresponding author
Email address for correspondence: rempel@ita.br
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

V. Archontis , S. B. F. Dorch & A. Nordlund 2003 Numerical simulations of kinematic dynamo action. Astron. Astrophys. 397, 393399.

A. W. Baggaley , C. F. Barenghi , A. Shukurov & K. Subramanian 2009 Reconnecting flux-rope dynamo. Phys. Rev. E 80, 055301.

F. J. Beron-Vera , M. J. Olascoaga & G. J. Goni 2010 Surface ocean mixing inferred from different multisatellite altimetry measurements. J. Phys. Oceanogr. 40, 24662480.

E. G. Blackman 1996 Overcoming the backreaction on turbulent motions in the presence of magnetic fields. Phys. Rev. Lett. 77, 26942697.

D. Borgogno , D. Grasso , F. Pegoraro & T. J. Schep 2011 Barriers in the transition to global chaos in collisionless magnetic reconnection. I. Ridges on the finite time Lyapunov exponent field. Phys. Plasmas 18, 102307.

A. Brandenburg 2001 The inverse cascade and nonlinear alpha-effect in simulations of isotropic helical hydromagnetic turbulence. Astrophys. J. 550, 824840.

A. Brandenburg , I. Klapper & J. Kurths 1995 Generalized entropies in a turbulent dynamo simulation. Phys. Rev. E 52, R4602R4605.

A. Brandenburg & K. Subramanian 2005 Astrophysical magnetic fields and nonlinear dynamo theory. Phys. Rep. 417, 1209.

M. Branicki , A. M. Mancho & S. Wiggins 2011 A Lagrangian description of transport associated with a fronteddy interaction: application to data from the North-Western Mediterranean Sea. Physica D 240, 282304.

F. Cattaneo , D. W. Hughes & E.-J. Kim 1996 Suppression of chaos in a simplified nonlinear dynamo model. Phys. Rev. Lett. 76, 20572060.

A. de la Cámara , A. M. Mancho , K. Ide , E. Serrano & C. R. Mechoso 2012 Routes of transport across the Antarctic polar vortex in the southern spring. J. Atmos. Sci. 69, 741752.

M. Chertkov , G. Falkovich , I. Kolokolov & M. Vergassola 1999 Small-scale turbulent dynamo. Phys. Rev. Lett. 83, 40654068.

M. S. Chong , A. E. Perry & B. J. Cantwell 1990 A general classification of three-dimensional flow fields. Phys. Fluids A 2, 765777.

P. Chuychai , D. Ruffolo , W. H. Matthaeus & G. Rowlands 2005 Suppressed diffusive escape of topologically trapped magnetic field lines. Astrophys. J. 633, L49L52.

P. Démoulin 2006 Extending the concept of separatrices to QSLs for magnetic reconnection. Adv. Space Res. 37, 12691282.

D. A. Donzis , P. K. Yeung & K. R. Sreenivasan 2008 Dissipation and enstrophy in isotropic turbulence: resolution effects and scaling in direct numerical simulations. Phys. Fluids 20, 045108.

T. E. Evans , R. K. W. Roeder , J. A. Carter & B. I. Rapoport 2004 Homoclinic tangles, bifurcations and edge stochasticity in diverted tokamaks. Contrib. Plasma Phys. 44, 235240.

M. Farazmand & G. Haller 2012 Computing Lagrangian coherent structures from their variational theory. Chaos 22, 013128.

G. Haller 2001 Distinguished material surfaces and coherent structures in three-dimensional fluid flows. Physica D 149, 248277.

G. Haller 2011 A variational theory of hyperbolic Lagrangian coherent structures. Physica D 240, 574598.

G. Haller & F. J. Beron-Vera 2012 Geodesic theory of transport barriers in two-dimensional flows. Physica D 241, 16801702.

G. Haller & G. Yuan 2000 Lagrangian coherent structures and mixing in two-dimensional turbulence. Physica D 147, 352370.

S. J. Lawson & G. N. Barakos 2010 Computational fluid dynamics analyses of flow over weapons-bay geometries. J. Aircraft 47, 16051623.

X. Leoncini , O. Agullo , M. Muraglia & C. Chandre 2006 From chaos of lines to Lagrangian structures in flux conservative fields. Eur. Phys. J. B 53, 351360.

J. A. J. Madrid & A. M. Mancho 2009 Distinguished trajectories in time dependent vector fields. Chaos 19, 013111.

C. Mendoza & A. M. Mancho 2010 Hidden geometry of ocean flows. Phys. Rev. Lett. 105, 038501.

C. Mendoza , A. M. Mancho & M.-H. Rio 2010 The turnstile mechanism across the Kuroshio current: analysis of dynamics in altimeter velocity fields. Nonlinear Process. Geophys. 17, 103111.

T. Peacock & J. Dabiri 2010 Introduction to focus issue: Lagrangian coherent structures. Chaos 20, 017501.

E. L. Rempel , A. C.-L. Chian & A. Brandenburg 2011 Lagrangian coherent structures in nonlinear dynamos. Astrophys. J. Lett. 735, L9 (7pp).

E. L. Rempel , A.C.-L. Chian & A. Brandenburg 2012 Lagrangian chaos in an ABC-forced nonlinear dynamo. Phys. Scr. 86, 018405.

D. Ruffolo , W. H. Matthaeus & P. Chuychai 2003 Trapping of solar energetic particles by the small-scale topology of solar wind turbulence. Astrophys. J. 597, L169L172.

J. C. Santos , J. Büchner , M. S. Madjarska & M. V. Alves 2008 On the relation between DC current locations and an EUV bright point: a case study. Astron. Astrophys. 490, 345352.

A. Seripienlert , D. Ruffolo , W. H. Matthaeus & P. Chuychai 2010 Dropouts in solar energetic particles: associated with local trapping boundaries or current sheets? Astrophys. J. 711, 980989.

S. Servidio , W. H. Matthaeus , M. A. Shay , P. Dmitruk , P. A. Cassak & M. Wan 2010 Statistics of magnetic reconnection in two-dimensional magnetohydrodynamic turbulence. Phys. Plasmas 17, 032315.

S. C. Shadden 2011 Lagrangian coherent structures. In Transport and Mixing in Laminar Flows, pp. 5989. Wiley-VCH Verlag GmbH & Co. KGaA.

S. C. Shadden , F. Lekien & J. E. Marsden 2005 Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Physica D 212, 271304.

A. V. Varun , K. Balasubramanian & R. I. Sujith 2008 An automated vortex detection scheme using the wavelet transform of the d2 field. Exp. Fluids 45, 857868.

G. A. Voth , G. Haller & J. P. Gollub 2002 Experimental measurements of stretching fields in fluid mixing. Phys. Rev. Lett. 88, 254501.

J. Weiss 1991 The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Physica D 48, 273294.

A. R. Yeates & G. Hornig 2011 A generalized flux function for three-dimensional magnetic reconnection. Phys. Plasmas 18, 102118.

A. R. Yeates , G. Hornig & B. T. Welsch 2012 Lagrangian coherent structures in photospheric flows and their implications for coronal magnetic structures. Astron. Astrophys. 539, A1 (9pp).

J. Zhong , T. S. Huang & R. J. Adrian 1998 Extracting 3D vortices in turbulent fluid flow. IEEE Trans. Pattern Anal. Mach. Intell. 20, 193199.

E. Zienicke , H. Politano & A. Pouquet 1998 Variable intensity of Lagrangian chaos in the nonlinear dynamo problem. Phys. Rev. Lett. 81, 46404643.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 18 *
Loading metrics...

Abstract views

Total abstract views: 64 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 28th April 2017. This data will be updated every 24 hours.