Skip to main content
×
Home
    • Aa
    • Aa

Coherent structures, uniform momentum zones and the streamwise energy spectrum in wall-bounded turbulent flows

  • Theresa Saxton-Fox (a1) and Beverley J. McKeon (a2)
Abstract

Large-scale motions (LSMs) in wall-bounded turbulent flows have well-characterised instantaneous structural features (Kovasznay et al., J. Fluid Mech., vol. 41 (2), 1970, pp. 283–325; Meinhart & Adrian, Phys. Fluids, vol. 7 (4), 1995, pp. 694–696) and a known spectral signature (Monty et al., J. Fluid Mech., vol. 632, 2009, pp. 431–442). This work aims to connect these previous observations through the development and analysis of a representative model for LSMs. The model is constructed to be consistent with the streamwise energy spectrum (Monty et al. 2009) and amplification characteristics of the Navier–Stokes equations (McKeon & Sharma, J. Fluid Mech., vol. 658, 2010, pp. 336–382), and is found to naturally recreate characteristics of instantaneous turbulent structures, including a bulge shape (Kovasznay et al. 1970) and the presence of uniform momentum zones (Meinhart & Adrian 1995) in the streamwise velocity field. The observed structural similarity between the LSM representative model and instantaneous experimental data supports the use of travelling wave models to connect statistical and instantaneous descriptions of coherent structures, and clarifies a simple general equivalency between symmetry in a Reynolds-decomposed velocity field and asymmetry in the laboratory frame.

Copyright
Corresponding author
Email address for correspondence: tsaxtonf@caltech.edu
References
Hide All
AdrianR. J., ChristensenK. T. & LiuZ.-C. 2000a Analysis and interpretation of instantaneous turbulent velocity fields. Exp. Fluids 29, 275290.
AdrianR. J., MeinhartC. D. & TomkinsC. D. 2000b Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 154.
BlackwelderR. F. & EckelmannH. 1979 Streamwise vortices associated with the bursting phenomenon. J. Fluid Mech. 94 (3), 577594.
ChauhanK., PhilipJ., de SilvaC. M., HutchinsN. & MarusicI. 2014 The turbulent/non-turbulent interface and entrainment in a boundary layer. J. Fluid Mech. 742, 119151.
ChenC. H. P. & BlackwelderR. F. 1978 Large-scale motion in a turbulent boundary layer: a study using temperature contamination. J. Fluid Mech. 89 (1), 131.
ChungD. & McKeonB. J. 2010 Large-eddy simulation of large-scale structures in long channel flow. J. Fluid Mech. 661, 341364.
EismaJ., WesterweelJ., OomsG. & ElsingaG. E. 2015 Interfaces and internal layers in a turbulent boundary layer. Phys. Fluids 27, 055103.
HussainA. K. M. F. & ReynoldsW. C. 1970 The mechanics of an organized wave in turbulent shear flow. J. Fluid Mech. 41 (2), 241258.
JacobiI. & MckeonB. J. 2011 Dynamic roughness perturbation of a turbulent boundary layer. J. Fluid Mech. 688, 258296.
KlewickiJ. C. 2013 A description of turbulent wall-flow vorticity consistent with mean dynamics. J. Fluid Mech. 737, 176204.
KlineS. J., ReynoldsW. C., SchraubF. A. & RunstadlerP. W. 1967 The structure of turbulent boundary layers. J. Fluid Mech. 30 (4), 741773.
KovasznayL. S. G., KibensV. & BlackwelderR. F. 1970 Large-scale motion in the intermittent region of a turbulent boundary layer. J. Fluid Mech. 41 (2), 283325.
MckeonB. J. 2017 The engine behind (wall) turbulence: perspectives on scale interactions. J. Fluid Mech. 817, P1.
MckeonB. J. & SharmaA. S. 2010 A critical-layer framework for turbulent pipe flow. J. Fluid Mech. 658, 336382.
MeinhartC. D. & AdrianR. J. 1995 On the existence of uniform momentum zones in a turbulent boundary layer. Phys. Fluids 7 (4), 694696.
MoarrefR., SharmaA. S., TroppJ. A. & MckeonB. J. 2013 Model-based scaling of the streamwise energy density in high-Reynolds-number turbulent channels. J. Fluid Mech. 734, 275316.
MontyJ. P., HutchinsN., NgH. C. H., MarusicI. & ChongM. S. 2009 A comparison of turbulent pipe, channel and boundary layer flows. J. Fluid Mech. 632, 431442.
RosenbergB. J., HultmarkM., VallikiviM., BaileyS. C. C. & SmitsA. J. 2013 Turbulence spectra in smooth- and rough-wall pipe flow at extreme Reynolds numbers. J. Fluid Mech. 731, 4663.
SharmaA. S. & MckeonB. J. 2013 On coherent structure in wall turbulence. J. Fluid Mech. 728, 196238.
de SilvaC. M., HutchinsN. & MarusicI. 2016 Uniform momentum zones in turbulent boundary layers. J. Fluid Mech. 786, 309331.
ZamanK. B. M. Q. & HussainA. K. M. F. 1981 Taylor hypothesis and large-scale coherent structures. J. Fluid Mech. 112, 379396.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 6
Total number of PDF views: 291 *
Loading metrics...

Abstract views

Total abstract views: 372 *
Loading metrics...

* Views captured on Cambridge Core between 15th August 2017 - 24th October 2017. This data will be updated every 24 hours.