Skip to main content
×
Home

Collapse and pinch-off of a non-axisymmetric impact-created air cavity in water

  • Oscar R. Enriquez (a1), Ivo R. Peters (a1), Stephan Gekle (a1), Laura E. Schmidt (a1), Detlef Lohse (a1) and Devaraj van der Meer (a1)...
Abstract
Abstract

The axisymmetric collapse of a cylindrical air cavity in water follows a universal power law with logarithmic corrections. Nonetheless, it has been suggested that the introduction of a small azimuthal disturbance induces a long-term memory effect, reflecting in oscillations which are no longer universal but remember the initial condition. In this work, we create non-axisymmetric air cavities by driving a metal disc through an initially quiescent water surface and observe their subsequent gravity-induced collapse. The cavities are characterized by azimuthal harmonic disturbances with a single mode number and amplitude . For small initial distortion amplitude (1 or 2 % of the mean disc radius), the cavity walls oscillate linearly during collapse, with nearly constant amplitude and increasing frequency. As the amplitude is increased, higher harmonics are triggered in the oscillations and we observe more complex pinch-off modes. For small-amplitude disturbances we compare our experimental results with the model for the amplitude of the oscillations by Schmidt et al. (Nature Phys., vol. 5, 2009, pp. 343–346) and the model for the collapse of an axisymmetric impact-created cavity previously proposed by Bergmann et al. (J. Fluid Mech., vol. 633, 2009b, pp. 381–409). By combining these two models we can reconstruct the three-dimensional shape of the cavity at any time before pinch-off.

Copyright
Corresponding author
Email address for correspondence: oscarenriquez@gmail.com
References
Hide All
1. Bergmann R., Andersen A., van der Meer D. & Bohr T. 2009a Bubble pinch-off in a rotating flow. Phys. Rev. Lett. 102 (20), 204501.
2. Bergmann R., van der Meer D., Gekle S., van der Bos A. & Lohse D. 2009b Controlled impact of a disk on a water surface: cavity dynamics. J. Fluid Mech. 633, 381409.
3. Bergmann R., van der Meer D., Stijnman M., Sandtke M., Prosperetti A. & Lohse D. 2006 Giant bubble pinch-off. Phys. Rev. Lett. 96 (15), 154505.
4. Burton J. C., Waldrep R. & Taborek P. 2005 Scaling and instabilities in bubble pinch-off. Phys. Rev. Lett. 94 (18), 184502.
5. Eggers J., Fontelos M. A., Leppinen D. & Snoeijer J. H. 2007 Theory of the collapsing axisymmetric cavity. Phys. Rev. Lett. 98 (9), 094502.
6. Enriquez O. R., Peters I. R., Gekle S., Schmidt L. E., van der Meer D. & Lohse D. 2011 Non-axisymmetric impact creates pineapple-shaped cavity. Phys. Fluids 23 (9), 091104.
7. Enriquez O. R., Peters I. R., Gekle S., Schmidt L. E., van der Meer D., Versluis M. & Lohse D. 2010 Collapse of non-axisymmetric cavities. Phys. Fluids 22 (9), 091104.
8. Gekle S., van der Bos A., Bergmann R., van der Meer D. & Lohse D. 2008 Noncontinuous froude number scaling for the closure depth of a cylindrical cavity. Phys. Rev. Lett. 100 (8), 084502.
9. Gekle S., Gordillo J. M., van der Meer D. & Lohse D. 2009a High-speed jet formation after solid object impact. Phys. Rev. Lett. 102 (3), 034502.
10. Gekle S., Snoeijer J. H., Lohse D. & van der Meer D. 2009b Approach to universality in axisymmetric bubble pinch-off. Phys. Rev. E 80 (3), 036305.
11. Gordillo J. & Perez-Saborid M. 2006 Axisymmetric breakup of bubbles at high reynolds numbers. J. Fluid Mech 562, 303312.
12. Gordillo J. M., Sevilla A., Rodríguez-Rodríguez J. & Martínez-Bazán C. 2005 Axisymmetric bubble pinch-off at high Reynolds numbers. Phys. Rev. Lett. 95 (19), 194501.
13. Grumstrup T., Keller J. B. & Belmonte A. 2007 Cavity ripples observed during the impact of solid objects into liquids. Phys. Rev. Lett. 99 (11), 114502.
14. Keim N. C. 2011 Perturbed breakup of gas bubbles in water: Memory, gas flow, and coalescence. Phys. Rev. E 83 (5), 056325.
15. Keim N. C., Møller P., Zhang W. W. & Nagel S. R. 2006 Breakup of air bubbles in water: Memory and breakdown of cylindrical symmetry. Phys. Rev. Lett. 97 (14), 144503.
16. Lohse D., Bergmann R., Mikkelsen R., Zeilstra C., van der Meer D., Versluis M., van der Weele K., van der Hoef M. & Kuipers H. 2004 Impact on soft sand: Void collapse and jet formation. Phys. Rev. Lett. 93 (19), 198003.
17. Longuet-Higgins M. S., Kerman B. R. & Lunde K. 1991 The release of air bubbles from an underwater nozzle. J. Fluid Mech. 230, 365390.
18. Oguz H. N. & Prosperetti A. 1993 Dynamics of bubble growth and detachment from a needle. J. Fluid Mech. 257, 111145.
19. Schmidt L. E. 2008 Azimuthal asymmetries and vibrational modes in bubble pinch-off. PhD Thesis, University of Chicago, arXiv:1112.4440v1.
20. Schmidt L. E., Keim N. C., Zhang W. W. & Nagel S. R. 2009 Memory-encoding vibrations in a disconnecting air bubble. Nature Phys. 5 (5), 343346.
21. Thoroddsen S. T., Etoh T. G. & Takehara K. 2007 Experiments on bubble pinch-off. Phys. Fluids 19 (4), 042101.
22. Turitsyn K. S., Lai L. & Zhang W. W. 2009 Asymmetric disconnection of an underwater air bubble: persistent neck vibrations evolve into a smooth contact. Phys. Rev. Lett. 103 (12), 124501.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Type Description Title
VIDEO
Movies

Enriquez et al. supplementary movie
Movie 10: Pinch-off comparison of a round disc and three discs with m = 6 disturbance. (Figure 13)

 Video (2.4 MB)
2.4 MB
VIDEO
Movies

Enriquez et al. supplementary movie
Movie 9: Top view of collapse with m = 3 and a = 25% (Figure 12)

 Video (1.3 MB)
1.3 MB
VIDEO
Movies

Enriquez et al. supplementary movie
Movie 4: Side view of collapse with m = 20 and a = 4% (Figure 9)

 Video (1.6 MB)
1.6 MB
VIDEO
Movies

Enriquez et al. supplementary movie
Movie 3: Top view of collapse with m = 16 and a = 2% (Figure 5)

 Video (1.4 MB)
1.4 MB
VIDEO
Movies

Enriquez et al. supplementary movie
Movie 7: Top view of collapse with m = 6 and a = 10% (Figure 11b)

 Video (1.2 MB)
1.2 MB
VIDEO
Movies

Enriquez et al. supplementary movie
Movie 8: Top view of collapse with m = 6 and a = 25% (Figure 11c)

 Video (1.4 MB)
1.4 MB
VIDEO
Movies

Enriquez et al. supplementary movie
Movie 5: Side view of collapse with m = 20 and a = 2% (Figure 10)

 Video (1.3 MB)
1.3 MB
VIDEO
Movies

Enriquez et al. supplementary movie
Movie 2: Top view of collapse with m = 3 and a = 10% (Figure 4)

 Video (1.1 MB)
1.1 MB
VIDEO
Movies

Enriquez et al. supplementary movie
Movie 6: Top view of collapse with m = 6 and a = 4% (Figure 11a)

 Video (1.2 MB)
1.2 MB
VIDEO
Movies

Enriquez et al. supplementary movie
Movie 1: Top view of collapse with m = 2 and a = 25% (Figure 3)

 Video (1.3 MB)
1.3 MB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 1
Total number of PDF views: 56 *
Loading metrics...

Abstract views

Total abstract views: 218 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 25th November 2017. This data will be updated every 24 hours.