Skip to main content
×
Home
    • Aa
    • Aa

Colour of turbulence

  • Armin Zare (a1), Mihailo R. Jovanović (a1) and Tryphon T. Georgiou (a1)
Abstract

In this paper, we address the problem of how to account for second-order statistics of turbulent flows using low-complexity stochastic dynamical models based on the linearized Navier–Stokes equations. The complexity is quantified by the number of degrees of freedom in the linearized evolution model that are directly influenced by stochastic excitation sources. For the case where only a subset of velocity correlations are known, we develop a framework to complete unavailable second-order statistics in a way that is consistent with linearization around turbulent mean velocity. In general, white-in-time stochastic forcing is not sufficient to explain turbulent flow statistics. We develop models for coloured-in-time forcing using a maximum entropy formulation together with a regularization that serves as a proxy for rank minimization. We show that coloured-in-time excitation of the Navier–Stokes equations can also be interpreted as a low-rank modification to the generator of the linearized dynamics. Our method provides a data-driven refinement of models that originate from first principles and captures complex dynamics of turbulent flows in a way that is tractable for analysis, optimization and control design.

Copyright
Corresponding author
Email address for correspondence: mihailo@umn.edu
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

R. J. Adrian 2007 Hairpin vortex organization in wall turbulence. Phys. Fluids 19 (4), 041301.

N. A. Bakas  & P. J. Ioannou 2014 A theory for the emergence of coherent structures in beta-plane turbulence. J. Fluid Mech. 740, 312341.

B. Bamieh  & M. Dahleh 2001 Energy amplification in channel flows with stochastic excitation. Phys. Fluids 13 (11), 32583269.

G. Berkoo , P. Holmes  & J. L. Lumley 1993 The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25 (1), 539575.

F. P. Bertolotti , T. Herbert  & P. R. Spalart 1992 Linear and nonlinear stability of the Blasius boundary layer. J. Fluid Mech. 242, 441474.

T. R. Bewley  & S. Liu 1998 Optimal and robust control and estimation of linear paths to transition. J. Fluid Mech. 365, 305349.

S. Boyd  & L. Vandenberghe 2004 Convex Optimization. Cambridge University Press.

J. U. Bretheim , C. Meneveau  & D. F. Gayme 2015 Standard logarithmic mean velocity distribution in a band-limited restricted nonlinear model of turbulent flow in a half-channel. Phys. Fluids 27 (1), 011702.

K. M. Butler  & B. F. Farrell 1992 Three-dimensional optimal perturbations in viscous shear flow. Phys. Fluids A 4 (8), 16371650.

K. M. Butler  & B. F. Farrell 1993 Optimal perturbations and streak spacing in wall-bounded turbulent shear flow. Phys. Fluids A 5 (3), 774777.

C. Cambon , F. S. Godeferd , F. C. G. A. Nicolleau  & J. C. Vassilicos 2004 Turbulent diffusion in rapidly rotating flows with and without stable stratification. J. Fluid Mech. 499, 231255.

E. J. Candès  & Y. Plan 2010 Matrix completion with noise. Proc. IEEE 98 (6), 925936.

E. J. Candès  & B. Recht 2009 Exact matrix completion via convex optimization. Found. Comput. Math. 9 (6), 717772.

K. K. Chen , J. H. Tu  & C. W. Rowley 2012 Variants of dynamic mode decomposition: boundary condition, Koopman, and Fourier analyses. J. Nonlinear Sci. 22 (6), 887915.

Y. Chen , M. R. Jovanović  & T. T. Georgiou 2013 State covariances and the matrix completion problem. In Proceedings of the 52nd IEEE Conference on Decision and Control, pp. 17021707.

S. I. Chernyshenko  & M. F. Baig 2005 The mechanism of streak formation in near-wall turbulence. J. Fluid Mech. 544, 99131.

M. Chevalier , J. Hœpffner , T. R. Bewley  & D. S. Henningson 2006 State estimation in wall-bounded flow systems. Part 2. Turbulent flows. J. Fluid Mech. 552, 167187.

N. R. Clark  & J. C. Vassilicos 2011 Kinematic simulation of fully developed turbulent channel flow. Flow Turbul. Combust. 86 (2), 263293.

N. C. Constantinou , B. F. Farrell  & P. J. Ioannou 2014a Emergence and equilibration of jets in beta-plane turbulence: applications of stochastic structural stability theory. J. Atmos. Sci. 71 (5), 18181842.

C. Cossu , G. Pujals  & S. Depardon 2009 Optimal transient growth and very large-scale structures in turbulent boundary layers. J. Fluid Mech. 619, 7994.

J. C. Del Álamo  & J. Jiménez 2003 Spectra of the very large anisotropic scales in turbulent channels. Phys. Fluids 15 (6), 4144.

J. C. Del Álamo  & J. Jiménez 2006 Linear energy amplification in turbulent channels. J. Fluid Mech. 559, 205213.

J. C. Del Álamo , J. Jiménez , P. Zandonade  & R. D. Moser 2004 Scaling of the energy spectra of turbulent channels. J. Fluid Mech. 500 (1), 135144.

T. DelSole 1996 Can quasigeostrophic turbulence be modeled stochastically? J. Atmos. Sci. 53 (11), 16171633.

T. DelSole 2000 A fundamental limitation of Markov models. J. Atmos. Sci. 57 (13), 21582168.

T. DelSole 2004 Stochastic models of quasigeostrophic turbulence. Surv. Geophys. 25 (2), 107149.

T. DelSole  & B. F. Farrell 1995 A stochastically excited linear system as a model for quasigeostrophic turbulence: Analytic results for one-and two-layer fluids. J. Atmos. Sci. 52 (14), 25312547.

T. DelSole  & B. F. Farrell 1996 The quasi-linear equilibration of a thermally maintained, stochastically excited jet in a quasigeostrophic model. J. Atmos. Sci. 53 (13), 17811797.

F. W. Elliott  & A. J. Majda 1996 Pair dispersion over an inertial range spanning many decades. Phys. Fluids 8 (4), 10521060.

B. F. Farrell  & P. J. Ioannou 1993a Optimal excitation of three-dimensional perturbations in viscous constant shear flow. Phys. Fluids A 5 (6), 13901400.

B. F. Farrell  & P. J. Ioannou 1993b Perturbation growth in shear flow exhibits universality. Phys. Fluids A 5 (9), 22982300.

B. F. Farrell  & P. J. Ioannou 1993c Stochastic dynamics of baroclinic waves. J. Atmos. Sci. 50 (24), 40444057.

B. F. Farrell  & P. J. Ioannou 1993d Stochastic forcing of the linearized Navier–Stokes equations. Phys. Fluids  A 5 (11), 26002609.

B. F. Farrell  & P. J. Ioannou 1994 A theory for the statistical equilibrium energy spectrum and heat flux produced by transient baroclinic waves. J. Atmos. Sci. 51 (19), 26852698.

B. F. Farrell  & P. J. Ioannou 1995 Stochastic dynamics of the midlatitude atmospheric jet. J. Atmos. Sci. 52 (10), 16421656.

B. F. Farrell  & P. J. Ioannou 1998 Perturbation structure and spectra in turbulent channel flow. Theor. Comput. Fluid Dyn. 11, 237250.

B. F. Farrell  & P. J. Ioannou 2003 Structural stability of turbulent jets. J. Atmos. Sci. 60 (17), 21012118.

B. F. Farrell  & P. J. Ioannou 2007 Structure and spacing of jets in barotropic turbulence. J. Atmos. Sci. 64 (10), 36523665.

B. F. Farrell  & P. J. Ioannou 2012 Dynamics of streamwise rolls and streaks in turbulent wall-bounded shear flow. J. Fluid Mech. 708, 149196.

J. H. M. Fransson , A. Talamelli , L. Brandt  & C. Cossu 2006 Delaying transition to turbulence by a passive mechanism. Phys. Rev. Lett. 96 (6), 064501.

J. C. H. Fung , J. C. R. Hunt , N. A. Malik  & R. J. Perkins 1992 Kinematic simulation of homogeneous turbulence by unsteady random Fourier modes. J. Fluid Mech. 236, 281318.

T. T. Georgiou 2002a Spectral analysis based on the state covariance: the maximum entropy spectrum and linear fractional parametrization. IEEE Trans. Autom. Control 47 (11), 18111823.

T. T. Georgiou 2002b The structure of state covariances and its relation to the power spectrum of the input. IEEE Trans. Autom. Control 47 (7), 10561066.

L. H. Gustavsson 1991 Energy growth of three-dimensional disturbances in plane Poiseuille flow. J. Fluid Mech. 98, 149.

J. M. Hamilton , J. Kim  & F. Waleffe 1995 Regeneration mechanisms of near-wall turbulence structures. J. Fluid Mech. 287, 317348.

D. S. Henningson  & S. C. Reddy 1994 On the role of linear mechanisms in transition to turbulence. Phys. Fluids 6 (3), 13961398.

T. Herbert 1997 Parabolized stability equations. Annu. Rev. Fluid Mech. 29 (1), 245283.

J. Hœpffner , L. Brandt  & D. S. Henningson 2005a Transient growth on boundary layer streaks. J. Fluid Mech. 537, 91100.

J. Hœpffner , M. Chevalier , T. R. Bewley  & D. S. Henningson 2005b State estimation in wall-bounded flow systems. Part 1. Perturbed laminar flows. J. Fluid Mech. 534, 263294.

M. Högberg , T. R. Bewley  & D. S. Henningson 2003a Linear feedback control and estimation of transition in plane channel flow. J. Fluid Mech. 481, 149175.

M. Högberg , T. R. Bewley  & D. S. Henningson 2003b Relaminarization of Re 𝜏 = 100 turbulence using linear state-feedback control. Phys. Fluids 15 (11), 35723575.

M. Högberg  & D. S. Henningson 2002 Linear optimal control applied to instabilities in spatially developing boundary layers. J. Fluid Mech. 470, 151179.

Y. Hwang  & C. Cossu 2010b Linear non-normal energy amplification of harmonic and stochastic forcing in the turbulent channel flow. J. Fluid Mech. 664, 5173.

M. R. Jovanović 2008 Turbulence suppression in channel flows by small amplitude transverse wall oscillations. Phys. Fluids 20 (1), 014101; (11 pages).

M. R. Jovanović  & B. Bamieh 2001 Modelling flow statistics using the linearized Navier–Stokes equations. In Proceedings of the 40th IEEE Conference on Decision and Control, pp. 49444949.

M. R. Jovanović  & B. Bamieh 2005 Componentwise energy amplification in channel flows. J. Fluid Mech. 534, 145183.

M. R. Jovanović , P. J. Schmid  & J. W. Nichols 2014 Sparsity-promoting dynamic mode decomposition. Phys. Fluids 26 (2), 22 pages.

A. Keating , U. Piomelli , E. Balaras  & H.-J. Kaltenbach 2004 A priori and a posteriori tests of inflow conditions for large-eddy simulation. Phys. Fluids 16 (12), 46964712.

J. Kim  & T. R. Bewley 2007 A linear systems approach to flow control. Annu. Rev. Fluid Mech. 39, 383417.

J. Kim  & F. Hussain 1993 Propagation velocity of perturbations in turbulent channel flow. Phys. Fluids A 5 (3), 695706.

J. Kim  & J. Lim 2000 A linear process in wall-bounded turbulent shear flows. Phys. Fluids 12 (8), 18851888.

J. Kim , P. Moin  & R. Moser 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.

P. S. Klebanoff , K. D. Tidstrom  & L. M. Sargent 1962 The three-dimensional nature of boundary-layer instability. J. Fluid Mech. 12, 134.

S. J. Kline , W. C. Reynolds , F. A. Schraub  & P. W. Runstadler 1967 The structure of turbulent boundary layers. J. Fluid Mech. 30 (04), 741773.

B. G. B. Klingmann 1992 On transition due to three-dimensional disturbances in plane Poiseuille flow. J. Fluid Mech. 240, 167195.

R. H. Kraichnan 1959 The structure of isotropic turbulence at very high Reynolds numbers. J. Fluid Mech. 5 (04), 497543.

R. H. Kraichnan 1971 An almost-Markovian Galilean-invariant turbulence model. J. Fluid Mech. 47 (03), 513524.

M. T. Landahl 1975 Wave breakdown and turbulence. SIAM J. Appl. Math. 28, 735756.

K. H. Lee , L. Cortelezzi , J. Kim  & J. Speyer 2001 Application of reduced-order controller to turbulent flows for drag reduction. Phys. Fluids 13 (5), 13211330.

M. J. Lee , J. Kim  & P. Moin 1990 Structure of turbulence at high shear rate. J. Fluid Mech. 216, 561583.

J. Lehew , M. Guala  & B. J. McKeon 2011 A study of the three-dimensional spectral energy distribution in a zero pressure gradient turbulent boundary layer. Exp. Fluids 51 (4), 9971012.

F. Lin  & M. R. Jovanović 2009 Least-squares approximation of structured covariances. IEEE Trans. Autom. Control 54 (7), 16431648.

A. J. Majda , I. Timofeyev  & E. V. Eijnden 1999 Models for stochastic climate prediction. Proc. Natl Acad. Sci. 96 (26), 1468714691.

A. J. Majda , I. Timofeyev  & E. V. Eijnden 2001 A mathematical framework for stochastic climate models. Commun. Pure Appl. Maths 54, 891974.

N. A. Malik  & J. C. Vassilicos 1999 A Lagrangian model for turbulent dispersion with turbulent-like flow structure: Comparison with direct numerical simulation for two-particle statistics. Phys. Fluids 11 (6), 15721580.

W. V. R. Malkus 1956 Outline of a theory of turbulent shear flow. J. Fluid Mech. 1 (5), 521539.

M. Matsubara  & P. H. Alfredsson 2001 Disturbance growth in boundary layers subjected to free-stream turbulence. J. Fluid Mech. 430, 149168.

B. J. McKeon  & A. S. Sharma 2010 A critical-layer framework for turbulent pipe flow. J. Fluid Mech. 658, 336382.

B. J. McKeon , A. S. Sharma  & I. Jacobi 2013 Experimental manipulation of wall turbulence: a systems approach. Phys. Fluids 25 (3), 031301.

I. Mezić 2005 Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dyn. 41, 309325.

I. Mezić 2013 Analysis of fluid flows via spectral properties of Koopman operator. Annu Rev. Fluid Mech. 45 (1), 357378.

R. Moarref  & M. R. Jovanović 2012 Model-based design of transverse wall oscillations for turbulent drag reduction. J. Fluid Mech. 707, 205240.

R. Moarref , M. R. Jovanović , J. A. Tropp , A. S. Sharma  & B. J. McKeon 2014 A low-order decomposition of turbulent channel flow via resolvent analysis and convex optimization. Phys. Fluids 26 (5), 051701.

P. Moin  & R. Moser 1989 Characteristic-eddy decomposition of turbulence in a channel. J. Fluid Mech. 200 (41), 509.

J. P. Monty  & M. S. Chong 2009 Turbulent channel flow: comparison of streamwise velocity data from experiments and direct numerical simulation. J. Fluid Mech. 633, 461474.

J. P. Monty , J. A. Stewart , R. C. Williams  & M. S. Chong 2007 Large-scale features in turbulent pipe and channel flows. J. Fluid Mech. 589, 147156.

R. D. Moser , J. Kim  & N. N. Mansour 1999 DNS of turbulent channel flow up to Re 𝜏 = 590. Phys. Fluids 11 (4), 943945.

B. R. Noack , M. Morzyński  & G. Tadmor 2011 Reduced-order Modelling for Flow Control, CISM Courses and Lectures, vol. 528. Springer.

S. A. Orszag 1970 Analytical theories of turbulence. J. Fluid Mech. 41 (02), 363386.

S. B. Pope 2000 Turbulent Flows. Cambridge University Press.

G. Pujals , M. García-Villalba , C. Cossu  & S. Depardon 2009 A note on optimal transient growth in turbulent channel flows. Phys. Fluids 21 (1), 015109.

B. Recht , M. Fazel  & P. A. Parrilo 2010 Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev. 52 (3), 471501.

S. C. Reddy  & D. S. Henningson 1993 Energy growth in viscous channel flows. J. Fluid Mech. 252, 209238.

S. C. Reddy , P. J. Schmid  & D. S. Henningson 1993 Pseudospectra of the Orr–Sommerfeld operator. SIAM J. Appl. Maths 53 (1), 1547.

H. L. Reed , W. S. Saric  & D. Arnal 1996 Linear stability theory applied to boundary layers. Annu. Rev. Fluid Mech. 28 (1), 389428.

W. C. Reynolds  & A. K. M. F. Hussain 1972 The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments. J. Fluid Mech. 54 (2), 263288.

W. C. Reynolds  & W. G. Tiederman 1967 Stability of turbulent channel flow with application to Malkus’s theory. J. Fluid Mech. 27 (2), 253272.

S. K. Robinson 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23 (1), 601639.

C. W. Rowley 2005 Model reduction for fluids using balanced proper orthogonal decomposition. Intl J. Bifurcation Chaos 15 (3), 9971013.

C. W. Rowley , I. Mezić , S. Bagheri , P. Schlatter  & D. S. Henningson 2009 Spectral analysis of nonlinear flows. J. Fluid Mech. 641, 115127.

P. J. Schmid 2007 Nonmodal stability theory. Annu. Rev. Fluid Mech. 39, 129162.

P. J. Schmid 2010 Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 528.

P. J. Schmid  & D. S. Henningson 1994 Optimal energy density growth in Hagen–Poiseuille flow. J. Fluid Mech. 277, 197225.

P. J. Schmid  & D. S. Henningson 2001 Stability and Transition in Shear Flows. Springer.

W. Schoppa  & F. Hussain 2002 Coherent structure generation in near-wall turbulence. J. Fluid Mech. 453, 57108.

J. A. Sillero , J. Jiménez  & R. D. Moser 2013 One-point statistics for turbulent wall-bounded flows at Reynolds numbers up to 𝛿+ ≈ 2000. Phys. Fluids 25, 105102.

J. A. Sillero , J. Jiménez  & R. D. Moser 2014 Two-point statistics for turbulent boundary layers and channels at Reynolds numbers up to 𝛿+ ≈ 2000. Phys. Fluids 26, 105109.

L. Sirovich 1987 Turbulence and the dynamics of coherent structures. Part I: coherent structures. Q. Appl. Maths 45, 561571.

C. R. Smith  & S. P. Metzler 1983 The characteristics of low-speed streaks in the near-wall region of a turbulent boundary layer. J. Fluid Mech. 129, 2754.

A. J. Smits , B. J. McKeon  & I. Marusic 2011 High-Reynolds number wall turbulence. Annu. Rev. Fluid Mech. 43, 353375.

G. Tadmor  & B. R. Noack 2011 Bernoulli, Bode, and Budgie (Ask the Experts). IEEE Contr. Syst. Mag. 31 (2), 1823.

G. I. Taylor 1938 The spectrum of turbulence. Proc. R. Soc. Lond. A 164, 476490.

V. L. Thomas , B. F. Farrell , P. J. Ioannou  & D. F. Gayme 2015 A minimal model of self-sustaining turbulence. Phys. Fluids 27 (10), 105104.

V. L. Thomas , B. K. Lieu , M. R. Jovanović , B. F. Farrell , P. J. Ioannou  & D. F. Gayme 2014 Self-sustaining turbulence in a restricted nonlinear model of plane Couette flow. Phys. Fluids 26 (10), 105112; (17 pages).

L. N. Trefethen , A. E. Trefethen , S. C. Reddy  & T. A. Driscoll 1993 Hydrodynamic stability without eigenvalues. Science 261, 578584.

F. Waleffe 1997 On a self-sustaining process in shear flows. Phys. Fluids 9 (4), 883900.

J. A. C. Weideman  & S. C. Reddy 2000 A MATLAB differentiation matrix suite. ACM Trans. Math. Softw. 26 (4), 465519.

K. J. A. Westin , A. V. Boiko , B. G. B. Klingmann , V. V. Kozlov  & P. H. Alfredsson 1994 Experiments in a boundary layer subjected to free stream turbulence. Part 1. Boundary layer structure and receptivity. J. Fluid Mech. 281, 193218.

X. Wu  & P. Moin 2009 Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer. J. Fluid Mech. 630, 541.

A. Zare , M. R. Jovanović  & T. T. Georgiou 2015 Alternating direction optimization algorithms for covariance completion problems. In Proceedings of the 2015 American Control Conference, pp. 515520.

K. Zhou , J. C. Doyle  & K. Glover 1996 Robust and Optimal Control. Prentice-Hall.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 11
Total number of PDF views: 304 *
Loading metrics...

Abstract views

Total abstract views: 433 *
Loading metrics...

* Views captured on Cambridge Core between 5th January 2017 - 20th September 2017. This data will be updated every 24 hours.