Skip to main content Accessibility help
×
Home

Common features between the Newtonian laminar–turbulent transition and the viscoelastic drag-reducing turbulence

  • Anselmo S. Pereira (a1), Roney L. Thompson (a2) and Gilmar Mompean (a3)

Abstract

The transition from laminar to turbulent flows has challenged the scientific community since the seminal work of Reynolds (Phil. Trans. R. Soc. Lond. A, vol. 174, 1883, pp. 935–982). Recently, experimental and numerical investigations on this matter have demonstrated that the spatio-temporal dynamics that are associated with transitional flows belong to the directed percolation class. In the present work, we explore the analysis of laminar–turbulent transition from the perspective of the recent theoretical development that concerns viscoelastic turbulence, i.e. the drag-reducing turbulent flow obtained from adding polymers to a Newtonian fluid. We found remarkable fingerprints of the variety of states that are present in both types of flows, as captured by a series of features that are known to be present in drag-reducing viscoelastic turbulence. In particular, when compared to a Newtonian fully turbulent flow, the universal nature of these flows includes: (i) the statistical dynamics of the alternation between active and hibernating turbulence; (ii) the weakening of elliptical and hyperbolic structures; (iii) the existence of high and low drag reduction regimes with the same boundary; (iv) the relative enhancement of the streamwise-normal stress; and (v) the slope of the energy spectrum decay with respect to the wavenumber. The maximum drag reduction profile was attained in a Newtonian flow with a Reynolds number near the boundary of the laminar regime and in a hibernating state. It is generally conjectured that, as the Reynolds number increases, the dynamics of the intermittency that characterises transitional flows migrate from a situation where heteroclinic connections between the upper and the lower branches of solutions are more frequent to another where homoclinic orbits around the upper solution become the general rule.

Copyright

Corresponding author

Email address for correspondence: rthompson@coppe.ufrj.br

References

Hide All
Alizard, F. & Biau, D. 2019 Restricted nonlinear model for high and low drag events in a plane channel flow. J. Fluid Mech. 864, 221243.10.1017/jfm.2019.14
Armfield, S. W. & Street, R. L. 2000 Fractional step methods for the Navier–Stokes equations on non-staggered grids. ANZIAM J. 42(E), C134C156.10.21914/anziamj.v42i0.593
Barkley, D. 2016 Theoretical perspective on the route to turbulence in a pipe. J. Fluid Mech. 803, 180.10.1017/jfm.2016.465
Barkley, D., Song, B., Mukund, V., Lemoult, G., Avila, M. & Hof, B. 2015 The rise of fully turbulent flow. Nature 526, 550564.10.1038/nature15701
Bird, R., Curtiss, C. F., Armstrong, R. & Hassager, O. 1987 Dynamics of Polymeric Liquids. Volume 2: Kinetic Theory. Wiley-Interscience.
Choueiri, G. H., Lopez, J. M. & Hof, B. 2018 Exceeding the asymptotic limit of polymer drag reduction. Phys. Rev. Lett. 120 (124501), 15.10.1103/PhysRevLett.120.124501
Dubief, Y., Terrapon, V. E. & Soria, J. 2013 On the mechanism of elasto-inertial turbulence. Phys. Fluids 25, 110817.10.1063/1.4820142
Dubief, Y., Terrapon, V. E., White, C. M., Shaqfeh, E. S. G., Moin, P. & Lele, S. K. 2005 New answers on the interaction between polymers and vortices in turbulent flows. Flow Turbul. Combust. 74, 311329.10.1007/s10494-005-9002-6
Dubief, Y., White, C. M., Shaqfeh, E. S. G. & Terrapon, V. E.2011 Polymer maximum drag reduction: a unique transitional state. arXiv:1106.4482v1.
Dubief, Y., White, C. M., Terrapon, V. E., Shaqfeh, E. S. G., Moin, P. & Lele, S. K. 2004 On the coherent drag-reducing and turbulence-enhancing behaviour of polymers in wall flows. J. Fluid Mech. 514, 271280.10.1017/S0022112004000291
Eckert, M. 2010 The troublesome birth of hydrodynamic stability theory: Sommerfeld and the turbulence problem. Eur. Phys. J. H 35, 2951.10.1140/epjh/e2010-00003-3
Elbing, B. R., Perlin, M., Dowling, D. R. & Ceccio, S. L. 2013 Modification of the mean near-wall velocity profile of a high-Reynolds number turbulent boundary layer with the injection of drag-reducing polymer solutions. Phys. Fluids 25, 085103.10.1063/1.4817073
Fu, Z., Iwaki, Y., Motozawa, M., Tsukara, T. & Kawaguchi, Y. 2015 Characteristic turbulent structure of a modified drag-reduced surfactant solution flow via dosing water from channel wall. Intl J. Heat Fluid Flow 53, 135145.10.1016/j.ijheatfluidflow.2015.03.006
Graham, M. D. 2014 Drag reduction and the dynamics of turbulence in simple and complex fluids. Phys. Fluids 26 (101301), 124.10.1063/1.4895780
Graham, M. D. 2015 Turbulence spreads like wildfire. Nature 526, 508509.10.1038/526508a
Grundestam, O., Wallin, S. & Johansson, A. V. 2008 Direct numerical simulations of rotating turbulent channel flow. J. Fluid Mech. 598, 177199.10.1017/S0022112007000122
Hansen, R. J. & Little, R. C. 1974 Early turbulence and drag reduction phenomena in larger pipes. Nature 252, 690690.10.1038/252690a0
Henningson, D. S., Lundbladh, A. & Johansson, A. V. 1993 A mechanism for bypass transition from localized disturbances in wall-bounded shear flows. J. Fluid Mech. 250, 169207.10.1017/S0022112093001429
Housiadas, K. D. & Beris, A. N. 2013 On the skin friction coefficient in viscoelastic wall-bounded flows. Intl J. Heat Fluid Flow 42, 4967.10.1016/j.ijheatfluidflow.2012.11.004
Hunt, J. C. R., Wray, A. A. & Moin, P.1988 Eddies, stream, and convergence zones in turbulent flows. Center for Turbulence Research – Proceedings of Summer Program Report CTR-S88, 193–208.
Johansson, A. V., Alfredsson, P. H. & Kim, J. 1991 Evolution and dynamics of shear-layer structures in near-wall turbulence. J. Fluid Mech. 224, 579599.10.1017/S002211209100188X
Kim, K., Li, C.-F., Sureshkumar, R., Balachandar, L. & Adrian, R. J. 2007 Effects of polymer stresses on eddy structures in drag-reduced turbulent channel flow. J. Fluid Mech. 584, 281299.10.1017/S0022112007006611
Komminaho, J., Lundbladh, A. & Johansson, A. V. 1996 Very large structures in plane turbulent Couette flow. J. Fluid Mech. 320, 259285.10.1017/S0022112096007537
Lundbladh, A. & Johansson, A. V. 1991 Direct simulation of turbulent spots in plane Couette flow. J. Fluid Mech. 229, 499516.10.1017/S0022112091003130
Min, T., Yoo, J. Y. & Choi, H. 2003a Maximum drag reduction in a turbulent channel flow by polymer additives. J. Fluid Mech. 492, 91100.10.1017/S0022112003005597
Min, T., Yoo, J. Y., Choi, H. & Joseph, D. D. 2003b Drag reduction by polymer additives in a turbulent channel flow. J. Fluid Mech. 486, 213238.10.1017/S0022112003004610
Park, J. S., Shekar, A. & Graham, M. 2018 Bursting and critical layer frequencies in minimal turbulent dynamics and connections to exact coherent states. Phys. Rev. Fluids 3 (014611), 118.10.1103/PhysRevFluids.3.014611
Pereira, A. S.2016 Transient aspects of the polymer induced drag reduction phenomenon. PhD thesis, pp. 1–211.
Pereira, A. S., Mompean, G. & Soares, E. J. 2018 Modeling and numerical simulations of polymer degradation in a drag reducing plane Couette flow. J. Non-Newtonian Fluid Mech. 256, 17.10.1016/j.jnnfm.2018.03.007
Pereira, A. S., Mompean, G., Thais, L. & Soares, E. J. 2017a Transient aspects of drag reducing plane Couette flows. J. Non-Newtonian Fluid Mech. 241, 6069.10.1016/j.jnnfm.2017.01.008
Pereira, A. S., Mompean, G., Thais, L., Soares, E. J. & Thompson, R. L. 2017b Active and hibernating turbulence in drag-reducing plane Couette flows. Phys. Rev. Fluids 2 (084605), 114.10.1103/PhysRevFluids.2.084605
Pereira, A. S., Mompean, G., Thais, L. & Thompson, R. L. 2017c Statistics and tensor analysis of polymer coil-stretch mechanism in turbulent drag reducing channel flow. J. Fluid Mech. 824, 135173.10.1017/jfm.2017.332
Pereira, A. S., Mompean, G., Thompson, R. L. & Soares, E. J. 2017d Elliptical, parabolic, and hyperbolic exchanges of energy in drag reducing plane Couette flows. Phys. Fluids 29, 115106.10.1063/1.5010047
Pomeau, Y. 1986 Front motion, metastability and subcritical bifurcations in hydrodynamics. Physica D 23, 311.
Pomeau, Y. 2015 The transition to turbulence in parallel flows: a personal view. C. R. Méc. 343, 210218.10.1016/j.crme.2014.10.002
Reynolds, O. 1883 An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Phil. Trans. R. Soc. Lond. A 174, 935982.
Sano, M. & Tamai, K. 2016 A universal transition to turbulence in channel flow. Nat. Phys. 12, 249253.10.1038/nphys3659
Shekar, A., McMullen, R. M., Wang, S.-N., McKeon, B. J. & Graham, M. D. 2019 Critical-layer structures and mechanisms in elastoinertial turbulence. Phys. Rev. Lett. 122, 124503.10.1103/PhysRevLett.122.124503
Sid, S., Terrapon, V. E. & Dubief, Y. 2018 Two-dimensional dynamics of elasto-inertial turbulence and its role in polymer drag reduction. Phys. Rev. Fluids 3 (011301), 19.10.1103/PhysRevFluids.3.011301
Sureshkumar, R., Beris, A. N. & Handler, R. A. 1997 Direct numerical simulation of the turbulent channel flow of a polymer solution. Phys. Fluids 9, 743755.10.1063/1.869229
Thais, L., Gatski, T. B. & Mompean, G. 2012 Some dynamical features of the turbulent flow of a viscoelastic fluid for reduced drag. J. Turbul. 13, 126.
Thais, L., Gatski, T. B. & Mompean, G. 2013a Analysis of polymer drag reduction mechanisms from energy budgets. Intl J. Heat Fluid Flow 43, 5261.10.1016/j.ijheatfluidflow.2013.05.016
Thais, L., Gatski, T. B. & Mompean, G. 2013b Spectral analysis of turbulent viscoelastic and newtonian channel flows. J. Non-Newtonian Fluid Mech. 200, 165176.10.1016/j.jnnfm.2013.04.006
Thais, L., Tejada-Martinez, A., Gatski, T. B. & Mompean, G. 2011 A massively parallel hybrid scheme for direct numerical simulation of turbulent viscoelastic channel flow. Comput. Fluids 43, 134142.10.1016/j.compfluid.2010.09.025
Toms, B. A. 1948 Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers. In Proceedings of the International Congress of Rheology, Holland, pp. 135141. North-Holland.
Tuckerman, L. S., Kreilos, T., Schrobsdorff, H., Scneider, T. M. & Gibson, J. F. 2014 Turbulent-laminar patterns in plane poiseuille flow. Phys. Fluids 26 (114103), 114.10.1063/1.4900874
Vinogradov, G. V. & Mannin, V. N. 1965 An experimental study of elastic turbulence. Colloid Polym. Sci. 201, 9398.
Virk, P. S. 1975a Drag reduction by collapsed and extended polyelectrolytes. Nature 253, 109110.10.1038/253109a0
Virk, P. S. 1975b Drag reduction fundamentals. AIChE J. 21, 625656.10.1002/aic.690210402
Virk, P. S., Mickley, H. S. & Smith, K. A. 1967 The Toms phenomenom: turbulent pipe flow of dilute polymer solutions. J. Fluid Mech. 22, 2230.
Virk, P. S., Mickley, H. S. & Smith, K. A. 1970 The ultimate asymptote and mean flow structure in Toms’ phenomenon. Trans. ASME J. Appl. Mech. 37, 488493.10.1115/1.3408532
Waleffe, F. 2001 Exact coherent structures in channel flow. J. Fluid Mech. 435, 93102.10.1017/S0022112001004189
Warholic, M. D., Massah, H. & Hanratty, T. J. 1999 Influence of drag-reducing polymers on turbulence: effects of Reynolds number, concentration and mixing. Exp. Fluids 27, 461472.10.1007/s003480050371
Watanabe, T. & Gotoh, T. 2013 Hybrid Eulerian-Lagrangian simulations for polymer–turbulence interactions. J. Fluid Mech. 717, 535574.10.1017/jfm.2012.595
Whalley, R. D., Park, J. S., Kushwaha, A., Dennis, D. J. C., Graham, M. D. & Poole, R. J. 2017 Low-drag events in transitional wall-bounded turbulence. Phys. Rev. Fluids 2 (034602), 19.10.1103/PhysRevFluids.2.034602
White, C. M., Dubief, Y. & Klewicki, J. 2012 Re-examining the logarithmic dependence of the mean velocity distribution in polymer drag reduced wall-bounded flow. Phys. Fluids 24, 021701.10.1063/1.3681862
White, C. M. & Mungal, M. G. 2008 Mechanics and prediction of turbulent drag reduction whit polymer additives. Annu. Rev. Fluid Mech. 40, 235256.10.1146/annurev.fluid.40.111406.102156
Xi, L. & Graham, M. D. 2010 Active and hibernating turbulence in minimal channel flow of Newtonian and polymerc fluids. Phys. Rev. Lett. 104, 218301.10.1103/PhysRevLett.104.218301
Xi, L. & Graham, M. D. 2012 Dynamics on the laminar–turbulent boundary and the origin of the maximum drag reduction asymptote. Phys. Rev. Lett. 108, 028301.10.1103/PhysRevLett.108.028301
Xiong, X., Tao, J., Chen, S. & Brandt, L. 2015 Turbulent bands in plane-poiseuille flow at moderate Reynolds numbers. Phys. Fluids 27 (041702), 17.10.1063/1.4917173
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Common features between the Newtonian laminar–turbulent transition and the viscoelastic drag-reducing turbulence

  • Anselmo S. Pereira (a1), Roney L. Thompson (a2) and Gilmar Mompean (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed