Skip to main content Accessibility help

Complete Hamiltonian formalism for inertial waves in rotating fluids

  • A. A. Gelash (a1) (a2), V. S. L’vov (a3) and V. E. Zakharov (a1) (a4) (a5)


A complete Hamiltonian formalism is suggested for inertial waves in rotating incompressible fluids. Resonance three-wave interaction processes – decay instability and confluence of two waves – are shown to play a key role in the weakly nonlinear dynamics and statistics of inertial waves in the rapid rotation case. Future applications of the Hamiltonian approach to inertial wave theory are investigated and discussed.


Corresponding author

Email address for correspondence:


Hide All
Bayly, B. J. 1986 Three-dimensional instability of elliptical flow. Phys. Rev. Lett. 57 (17), 2160.
Bellet, F., Godeferd, F. S., Scott, J. F. & Cambon, C. 2006 Wave turbulence in rapidly rotating flows. J. Fluid Mech. 562, 83121.
Bordes, G., Moisy, F., Dauxois, T. & Cortet, P. P. 2012 Experimental evidence of a triadic resonance of plane inertial waves in a rotating fluid. Phys. Fluids 24 (1), 014105.
Brouzet, C., Sibgatullin, I. N., Scolan, H., Ermanyuk, E. V. & Dauxois, T. 2016 Internal wave attractors examined using laboratory experiments and 3D numerical simulations. J. Fluid Mech. 793, 109131.
Cambon, C. & Jacquin, L. 1989 Spectral approach to non-isotropic turbulence subjected to rotation. J. Fluid Mech. 202, 295317.
Cambon, C., Rubinstein, R. & Godeferd, F. S. 2004 Advances in wave turbulence: rapidly rotating flows. New J. Phys. 6 (1), 73.
Craik, A. D. D. & Criminale, W. O. 1986 Evolution of wavelike disturbances in shear flows: a class of exact solutions of the Navier–Stokes equations. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 406, pp. 1326. The Royal Society.
Dyachenko, A. I., Korotkevich, A. O. & Zakharov, V. E. 2003 Decay of the monochromatic capillary wave. JETP Lett. 77 (9), 477481.
Galtier, S. 2003 Weak inertial-wave turbulence theory. Phys. Rev. E 68 (1), 015301.
Galtier, S. 2014 Theory for helical turbulence under fast rotation. Phys. Rev. E 89 (4), 041001.
Greenspan, H. P. 1968 The Theory of Rotating Fluids. Cambridge University Press.
Korotkevich, A. O., Dyachenko, A. I. & Zakharov, V. E. 2016 Numerical simulation of surface waves instability on a homogeneous grid. Physica D 321, 5166.
Kuznetsov, E. A. 1972 Turbulence of ion sound in a plasma located in a magnetic field. Sov. Phys. JETP 35, 310.
Kuznetsov, E. A. & Mikhailov, A. V. 1980 On the topological meaning of canonical Clebsch variables. Phys. Lett. A 77 (1), 3738.
Lamb, H. 1945 Hydrodynamics. Dover.
Landau, L. D. & Lifshitz, E. M. 1987 Fluid Mechanics. Pergamon.
Le Gal, P. 2013 Waves and instabilities in rotating and stratified flows. In Fluid Dynamics in Physics, Engineering and Environmental Applications, pp. 2540. Springer.
di Leoni, P. C. & Mininni, P. D. 2016 Quantifying resonant and near-resonant interactions in rotating turbulence. J. Fluid Mech. 809, 821842.
L’vov, V. S. 1994 Wave Turbulence under Parametric Excitation. Springer.
Lvov, Y. V., Polzin, K. L. & Tabak, E. G. 2004 Energy spectra of the ocean’s internal wave field: theory and observations. Phys. Rev. Lett. 92 (12), 128501.
Lvov, Y. V. & Tabak, E. G. 2001 Hamiltonian formalism and the Garrett–Munk spectrum of internal waves in the ocean. Phys. Rev. Lett. 87 (16), 168501.
Maas, L. R. M., Benielli, D., Sommeria, J. & Lam, F. P. A. 1997 Observation of an internal wave attractor in a confined, stably stratified fluid. Nature 388 (6642), 557561.
Messio, L., Morize, C., Rabaud, M. & Moisy, F. 2008 Experimental observation using particle image velocimetry of inertial waves in a rotating fluid. Exp. Fluids 44 (4), 519528.
Morrison, P. J. 1998 Hamiltonian description of the ideal fluid. Rev. Mod. Phys. 70 (2), 467.
Nazarenko, S. 2011 Wave Turbulence. Springer.
Phillips, O. M. 1966 The Dynamics of the Upper Ocean. Cambridge University Press.
Sagaut, P. & Cambon, C. 2008 Homogeneous Turbulence Dynamics. Cambridge University Press.
Salmon, R. 1988 Hamiltonian fluid mechanics. Annu. Rev. Fluid Mech. 20 (1), 225256.
Scolan, H., Ermanyuk, E. & Dauxois, T. 2013 Nonlinear fate of internal wave attractors. Phys. Rev. Lett. 110 (23), 234501.
Sen, A., Mininni, P. D., Rosenberg, D. & Pouquet, A. 2012 Anisotropy and nonuniversality in scaling laws of the large-scale energy spectrum in rotating turbulence. Phys. Rev. E 86 (3), 036319.
Waleffe, F. 1993 Inertial transfers in the helical decomposition. Phys. Fluids A 5 (3), 677685.
Yakhot, V. & Zakharov, V. 1993 Hidden conservation laws in hydrodynamics; energy and dissipation rate fluctuation spectra in strong turbulence. Physica D 64 (4), 379394.
Zakharov, V. E. 1971 Hamiltonian formalism for hydrodynamic plasma models. Sov. Phys. JETP 33, 927932.
Zakharov, V. E. & Kuznetsov, E. A. 1997 Hamiltonian formalism for nonlinear waves. Phys. Usp. 40 (11), 10871116.
Zakharov, V. E., L’vov, V. S. & Falkovich, G. 1992 Kolmogorov Spectra of Turbulence 1. Wave Turbulence. Springer.
Zakharov, V. E., L’vov, V. S. & Starobinets, S. S. 1971 Stationary nonlinear theory of parametric excitation of waves. Sov. Phys. JETP 32, 656.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Complete Hamiltonian formalism for inertial waves in rotating fluids

  • A. A. Gelash (a1) (a2), V. S. L’vov (a3) and V. E. Zakharov (a1) (a4) (a5)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed