Ahn, H. T. & Shashkov, M.
2008
Geometric algorithms for 3D interface reconstruction. In Proceedings of the 16th International Meshing Roundtable (ed. Brewer, M. L. & Marcum, D.), pp. 405–422. Springer.

Aksenenko, E. V., Makievski, A. V., Miller, R. & Fainerman, V. B.
1998
Dynamic surface tension of aqueous alkyl dimethyl phosphine oxide solutions. Effect of the alkyl chain length. Colloids Surf. A
143, 311–321.

Albert, C., Kromer, J., Robertson, A. M. & Bothe, D.
2015
Dynamic behaviour of buoyant high viscosity droplets rising in a quiescent liquid. J. Fluid Mech.
778, 485–533.

Alke, A. & Bothe, D.
2009
3D numerical modelling of soluble surfactant at fluid interfaces based on the Volume-of-Fluid method. Fluid Dyn. Mater. Process.
5 (4), 345–372.

Bothe, D. & Fleckenstein, S.
2013
A Volume-of-Fluid-based method for mass transfer processes at fluid particles. Chem. Engng Sci.
101, 283–302.

Bothe, D., Prüss, J. & Simonett, G.
2005
Well-posedness of a two-phase flow with soluble surfactant. In Nonlinear Elliptic and Parabolic Problems (ed. Escher, J. & Chipot, M.), pp. 37–61. Birkhäuser.

Cano-Lozano, J. C., Martínez-Bazán, C., Magnaudet, J. & Tchoufag, J.
2016
Paths and wakes of deformable nearly spheroidal rising bubbles close to the transition to path instability. Phys. Rev. Fluids
1 (5), 053604.

Chang, C. H. & Franses, E. I.
1995
Adsorption dynamics of surfactants at the air/water interface: a critical review of mathematical models, data, and mechanisms. Colloids Surf. A
100, 1–45.

Clift, R., Grace, J. R. & Weber, M. E.
1978
Bubbles, Drops, and Particles, 2nd edn. Dover Publications.

Cuenot, B., Magnaudet, J. & Spennato, B.
1997
The effects of slightly soluble surfactants on the flow around a spherical bubble. J. Fluid Mech.
339, 25–53.

Davis, R. E. & Acrivos, A.
1966
The influence of surfactants on the creeping motion of bubbles. Chem. Engng Sci.
21, 681–685.

Dieter-Kissling, K., Marschall, H. & Bothe, D.
2015a
Direct Numerical Simulation of droplet formation processes under the influence of soluble surfactant mixtures. Comput. Fluids
113, 93–105.

Dieter-Kissling, K., Marschall, H. & Bothe, D.
2015b
Numerical method for coupled interfacial surfactant transport on dynamic surface meshes of general topology. Comput. Fluids
109, 168–184.

Duineveld, P. C.
1995
The rise velocity and shape of bubbles in pure water at high Reynolds number. J. Fluid Mech.
292, 325–332.

Dukhin, S. S., Kovalchuk, V. I., Gochev, G. G., Lotfi, M., Krzan, M., Malysa, K. & Miller, R.
2015
Dynamics of Rear Stagnant Cap formation at the surface of spherical bubbles rising in surfactant solutions at large Reynolds numbers under conditions of small Marangoni number and slow sorption kinetics. Adv. Colloid Interface Sci.
222, 260–274.

Dukhin, S. S., Kretzschmar, G. & Miller, R.
1995
Dynamics of Adsorption at Liquid Interfaces. Elsevier.

Dukhin, S. S., Lotfi, M., Kovalchuck, V. I., Bastani, D. & Miller, R.
2016
Dynamics of rear stagnant cap formation at the surface of rising bubbles in surfactant solutions at large Reynolds and Marangoni numbers and for slow sorption kinetics. Colloids Surf. A
492, 127–137.

Ellingsen, K. & Risso, F.
2001
On the rise of an ellipsoidal bubble in water: oscillatory paths and liquid-induced velocity. J. Fluid Mech.
440, 235–268.

Fdhila, R. B. & Duineveld, P. C.
1996
The effect of surfactant on the rise of a spherical bubble at high Reynolds and Peclet numbers. Phys. Fluids
8, 310–321.

Ferziger, J. H. & Perić, M.
1996
Computational Methods for Fluid Dynamics. Springer.

He, Z., Maldarelli, C. & Dagan, Z.
1991
The size of stagnant caps of bulk soluble surfactant on the interface of translating fluid droplets. J. Colloid Interface Sci.
146, 442–451.

Hirt, C. W., Amsden, A. A. & Cook, J. L.
1974
An arbitrary Lagrangian–Eulerian computing method for all flow speeds. J. Comput. Phys.
14, 227–253.

Huang, J. & Saito, T.
2017a
Discussion about the differences in mass transfer, bubble motion and surrounding liquid motion between a contaminated system and a clean system based on consideration of three-dimensional wake structure obtained from LIF visualization. Chem. Engng Sci.
170, 105–115.

Huang, J. & Saito, T.
2017b
Influence of gas–liuid interface contamination on bubble motions, bubble wakes, and instantaneous mass transfer. Chem. Engng Sci.
157, 182–199.

Issa, R.
1986
Solution of the implicitly discretised fluid flow equations by operator-splitting. J. Comput. Phys.
62 (1), 40–65.

Jasak, H. & Tuković, Z.
2006
Automatic mesh motion for the unstructured finite volume method. Trans. FAMENA
30 (2), 1–20.

Kim, I. & Pearlstein, A.
1990
Stability of the flow past a sphere. J. Fluid Mech.
211, 73–93.

Kovalchuk, V. I., Krägel, J., Makievski, A. V., Ravera, F., Liggieri, L., Loglio, G., Fainerman, V. B. & Miller, R.
2004
Rheological surface properties of C_{12}DMPO solution as obtained from amplitude- and phase-frequency characteristics of an oscillating bubble system. J. Colloid Interface Sci.
280 (2), 498–505.

Krzan, M. & Malysa, K.
2002
Profiles of local velocities of bubbles in n-butanol, n-hexanol and n-nonanol solutions. Colloids Surf. A
207, 279–291.

Krzan, M., Zawala, J. & Malysa, K.
2007
Development of steady state adsorption distribution over interface of a bubble rising in solutions of n-alkanols (C5, C8) and n-alkyl trimethyl ammonium bromides (C8, C12, C16). Colloids Surf. A
298, 42–51.

Levich, V. G.
1962
Physicochemical Hydrodynamics, 2nd edn. Prentice-Hall.

Liao, Y. & McLaughlin, J. B.
2000
Bubble motion in aqueous surfactant solutions. J. Colloid Interface Sci.
224, 297–310.

Lochiel, A. C. & Calderbank, P. H.
1964
Mass Transfer in the continuous phase around axisymmetric bodies of revolution. Chem. Engng Sci.
19, 471–484.

Małysa, K., Zawala, J., Krzan, M. & Krasowska, M.
2011
Bubbles rising in solutions; local and terminal velocities, shape variations and collisions with free surface. In Bubble and Drop Interfaces (ed. Miller, R. & Liggieri, L.), Progress in Colloid and Interface Science, vol. 2. CRC Press, Taylor & Francis Group.

Miller, R., Fainerman, V. B., Pradines, V., Kovalchuk, V. I., Kovalchuk, N. M., Aksenenko, E. V., Liggieri, L., Ravera, F., Loglio, G., Sharipova, A., Vysotsky, Y., Vollhardt, D., Mucic, N., Wüstneck, R., Krägel, J. & Javadi, A.
2014
Surfactant adsorption layers at liquid interfaces. In Surfactant Science and Technology. Retrospects and Prospects (ed. Romsted, L. S.). CRC Press.

Mougin, G. & Magnaudet, J.
2002
Path instability of a rising bubble. Phys. Rev. Lett.
88, 14502.

Mougin, G. & Magnaudet, J.
2006
Wake-induced forces and torques on a zigzagging/spiralling bubble. J. Fluid Mech.
567, 185–194.

Muzaferija, S. & Perić, M.
1997
Computation of free-surface flows using the finite-volume method and moving grids. Numer. Heat Transfer B
32 (4), 369–384.

Pesci, C., Dieter-Kissling, K., Marschall, H. & Bothe, D.
2015
Finite volume/finite area interface tracking method for two-phase flows with fluid interfaces influenced by surfactant. In Progress in Colloid and Interface Science (ed. Rahni, M. T., Karbaschi, M. & Miller, R.). CRC Press, Taylor & Francis Group.

Pesci, C., Marschall, H., Ulaganathan, V., Kairaliyeva, T., Miller, R. & Bothe, D.
2017
Experimental and computational analysis of fluid interfaces influenced by soluble surfactant. In Transport Processes at Fluidic Interfaces (ed. Bothe, D. & Reusken, A.), chap. 15. Springer International Publishing, AG.

Sam, A., Gomez, C. O. & Finch, J. A.
1996
Axial velocity profiles of single bubbles in water/frother solutions. Intl J. Miner. Process.
47, 177–196.

Satapathy, R. & Smith, W.
1960
The motion of single immiscible drops through a liquid. J. Fluid Mech.
10, 561–570.

Stone, H. A.
1990
A simple derivation of the time-dependent convective-diffusion equation for surfactant transport along a deforming interface. Phys. Fluids A
2 (1), 111–112.

Tagawa, Y., Takagi, S. & Matsumoto, Y.
2014
Surfactant effects on path instability of a rising bubble. J. Fluid Mech.
378, 124–142.

Takemura, F.
2005
Adsorption of surfactants onto the surface of a spherical rising bubble and its effect on the terminal velocity of the bubble. Phys. Fluids
17, 048104.

Tasoglu, S., Demirci, U. & Muradoglu, M.
2008
The effect of soluble surfactant on the transient motion of a buoyancy-driven bubble. Phys. Fluids
20 (4), 040805.

Tomiyama, A., Kataoka, I., Zun, I. & Sakaguchi, T.
1998
Drag coefficients of single bubbles under normal and micro gravity condition. JSME Intl J.
41 (2), 472–479.

Tsuge, H. & Hibino, S.
1971
The motion of single gas bubbles rising in various liquids. Chem. Engng
35 (1), 65–71.

Tuković, Z. & Jasak, H.
2008
Simulation of free-rising bubble with soluble surfactant using moving mesh finite volume/area method. In 6th International Conference on CFD in Oil & Gas, Metallurgical and Process Industries SINTEF/NTNU, Trondheim, Norway.

Tuković, Z. & Jasak, H.
2012
A moving mesh finite volume interface tracking method for surface tension dominated interfacial fluid flow. Comput. Fluids
55, 70–84.

Ulaganathan, V.2016 Molecular Fundamentals of foam fractionation. PhD thesis, Universität Potsdam, Potsdam.

Versteeg, H. K. & Malalasekera, W.
1995-2007
An Introduction to Computational Fluid Dynamics. Pearson Education Limited.

de Vries, A. W. G., Biesheuvel, A. & van Wijngaarden, L.
2002
Notes on the path and wake of a gas bubble rising in pure water. Intl J. Multiphase Flow
28, 1823–1835.

Weber, P. S.2016 Modeling and numerical simulation of multi-component single- and two-phase fluid systems. PhD thesis, Technische Universität Darmstadt.

Weiner, A. & Bothe, D.
2017
Advanced subgrid-scale modeling for convection-dominated species transport at fluid interfaces with application to mass transfer from rising bubbles. J. Comput. Phys.
347, 261–289.

Zhang, Y. & Finch, J. A.
2001
A note on single bubble motion in surfactant solutions. J. Fluid Mech.
429, 63–66.