Skip to main content
×
Home
    • Aa
    • Aa

Computer extension and analytic continuation of Stokes’ expansion for gravity waves

  • Leonard W. Schwartz (a1)
Abstract

Stokes’ infinitesimal-wave expansion for steady progressive free-surface waves has been extended to high order using a computer to perform the coefficient arithmetic. Stokes’ expansion has been found to be incapable of yielding the highest wave for any value of the water depth since convergence is limited by a square-root branch-point some distance short of the maximum. By reformulating the problem using a different independent parameter, the highest waves are obtained correctly. Series summation and analytic continuation are facilitated by the use of Padé approximants. The method is valid in principle for any finite value of the wavelength and solutions of high accuracy can be obtained for most values of the wave height and water depth. An alternative expansion procedure proposed by Havelock for the computation of waves short of the highest has been reconsidered and found to be defective.

Copyright
References
Hide All
Baker, G. A.1965 The theory and application of the Padé approximant method. In Advances in Theoretical Physics (ed. K. Breuckner), vol. 1, p. 1. Academic.
Benjamin, T. B. & Feir, J. E.1967 J. Fluid Mech. 27, 417.
Boussinesq, J.1871 C. R. Acad. Sci., Paris, p. 755.
Chappelear, J. E.1959 U.S. Army Corps Engrs, Beach Erosion Bd, Tech. Memo. no. 116.
De, S. C.1955 Proc. Camb. Phil. Soc. 51, 713.
Domb, C. & Sykes, M. F.1957 Proc. Roy. Soc. A, 240, 214.
Gerstner, F. J. V.1804 Abh. bohm. Ges. Wiss. 1 (3) 1.
Grant, M.1973 J. Fluid Mech. 59, 257.
Havelock, T. H.1919 Proc. Roy. Soc. A, 95, 38.
Keller, J. B.1948 Comm. Appl. Math. 1, 323.
Korteweg, D. J. & de Vries, G.1895 Phil. Mag. 39 (5), 422.
Krasovskii, Yu. P.1960 Dokl. Acad. Nauk SSSR, 130, 1237.
Michell, J. H.1893 Phil. Mag. 36 (5), 430.
Nekrasov, A. I.1921 Izv. Ivanovo-Voznesensk. Politekhn. Inst. 3, 52.
Schwartz, L. W.1972 Ph.D. dissertation, Stanford University.
Shanks, D.1955 J. Math. & Phys. 34, 1.
Stokes, G. G.1849 Trans. Camb. Phil. Soc. 8, 441.
Stokes, G. G.1880 Mathematical and Physical Papers, vol. 1, p. 314. Cambridge University Press.
Van Dyke, M.1970 J. Fluid Mech. 44, 365.
Wehausen, J. V.1965 Free surface flows. In Research Frontiers in Fluid Dynamics (ed. R. J. Seeger & G. Temple), p. 534. Interscience.
Whitham, G. B.1967 J. Fluid Mech. 27, 399.
Wilton, J. R.1914 Phil. Mag. 27 (6), 385.
Yamada, H.1957a Rep. Res. Inst. Appl. Mech., Kyushu University, 5 (18), 37.
Yamada, H.1957b Rep. Res. Inst. Appl. Mech., Kyushu University, 5 (18), 53.
Yamada, H. & Shiotani, T.1968 Bull. Disas. Prev. Res. Inst., Kyoto University, 18 (135), 1.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 116 *
Loading metrics...

Abstract views

Total abstract views: 233 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th October 2017. This data will be updated every 24 hours.