Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-23T10:32:15.039Z Has data issue: false hasContentIssue false

Computing heteroclinic orbits using adjoint-based methods

Published online by Cambridge University Press:  12 November 2018

M. Farano*
Affiliation:
DMMM, Politecnico di Bari, Via Re David 200, 70125 Bari, Italy DynFluid Laboratory, Arts et Metiers ParisTech, 151 Bd de l’Hopital, 75013 Paris, France ECPS, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
S. Cherubini*
Affiliation:
DMMM, Politecnico di Bari, Via Re David 200, 70125 Bari, Italy
J.-C. Robinet
Affiliation:
DynFluid Laboratory, Arts et Metiers ParisTech, 151 Bd de l’Hopital, 75013 Paris, France
P. De Palma
Affiliation:
DMMM, Politecnico di Bari, Via Re David 200, 70125 Bari, Italy
T. M. Schneider*
Affiliation:
ECPS, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland

Abstract

Transitional turbulence in shear flows is supported by a network of unstable exact invariant solutions of the Navier–Stokes equations. The network is interconnected by heteroclinic connections along which the turbulent trajectories evolve between invariant solutions. While many invariant solutions in the form of equilibria, travelling waves and periodic orbits have been identified, computing heteroclinic connections remains a challenge. We propose a variational method for computing orbits dynamically connecting small neighbourhoods around equilibrium solutions. Using local information on the dynamics linearized around these equilibria, we demonstrate that we can choose neighbourhoods such that the connecting orbits shadow heteroclinic connections. The proposed method allows one to approximate heteroclinic connections originating from states with multi-dimensional unstable manifold and thereby provides access to heteroclinic connections that cannot easily be identified using alternative shooting methods. For plane Couette flow, we demonstrate the method by recomputing three known connections and identifying six additional previously unknown orbits.

Type
JFM Rapids
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Budanur, N. B., Short, K. Y., Farazmand, M., Willis, A. P. & Cvitanović, P. 2017 Relative periodic orbits form the backbone of turbulent pipe flow. J. Fluid Mech. 833, 274301.Google Scholar
Chantry, M. & Schneider, T. M 2014 Studying edge geometry in transiently turbulent shear flows. J. Fluid Mech. 747, 506517.Google Scholar
Cherubini, S. & De Palma, P. 2014 Minimal perturbations approaching the edge of chaos in a Couette flow. Fluid Dyn. Res. 46 (4), 041403.Google Scholar
Cherubini, S., De Palma, P., Robinet, J.-C. & Bottaro, A. 2010 Rapid path to transition via nonlinear localized optimal perturbations in a boundary-layer flow. Phys. Rev. E 82 (6), 066302.Google Scholar
Crommelin, D. T. 2003 Regime transitions and heteroclinic connections in a barotropic atmosphere. J. Atmos. Sci. 60 (2), 229246.Google Scholar
Dong, C. & Lan, Y. 2014 A variational approach to connecting orbits in nonlinear dynamical systems. Phys. Lett. A 378 (9), 705712.Google Scholar
Duguet, Y., Willis, A. P. & Kerswell, R. R. 2008 Transition in pipe flow: the saddle structure on the boundary of turbulence. J. Fluid Mech. 613, 255274.Google Scholar
Faisst, H. & Eckhardt, B. 2003 Travelling waves in pipe flow. Phys. Rev. Lett. 91, 224502.Google Scholar
Farano, M., Cherubini, S., Robinet, J.-C. & De Palma, P. 2015 Hairpin-like optimal perturbations in plane Poiseuille flow. J. Fluid Mech. 775, R2.Google Scholar
Farano, M, Cherubini, S, Robinet, J.-C. Robinet, De Palma, P. & Schneider, T. M.2018 How hairpin structures emerge from exact solutions of shear flows (in review).Google Scholar
Foures, DPG, Caulfield, CP & Schmid, PJ 2013 Localization of flow structures using -norm optimization. J. Fluid Mech. 729, 672701.Google Scholar
Gibson, J. F.2014 Channelflow: a spectral Navier-Stokes simulator in C++. Tech. Rep. U. New Hampshire, http://www.channelflow.ch.Google Scholar
Gibson, J. F., Halcrow, J. & Cvitanović, P. 2008 Visualizing the geometry of state space in plane Couette flow. J. Fluid Mech. 611, 107130.Google Scholar
Gibson, J. F., Halcrow, J. & Cvitanović, P. 2009 Equilibrium and traveling-wave solutions of plane Couette flow. J. Fluid Mech. 638, 243266.Google Scholar
Halcrow, J., Gibson, J. F., Cvitanović, P. & Viswanath, D. 2009 Heteroclinic connections in plane Couette flow. J. Fluid Mech. 621, 365376.Google Scholar
Hof, B. & Budanur, N. B. 2017 Heteroclinic path to spatially localized chaos in pipe flow. J. Fluid Mech. 827, R1.Google Scholar
Hof, B., van Doorne, C. W. H., Westerweel, J., Nieuwstadt, F. T. M., Faisst, H., Eckhardt, B., Wedin, H., Kerswell, R. R. & Waleffe, F. 2004 Experimental observation of nonlinear traveling waves in turbulent pipe flow. Science 305, 15941598.Google Scholar
Hopf, E. 1948 A mathematical example displaying features of turbulence. Commun. Pure Appl. Maths 1, 303322.Google Scholar
Kawahara, G. & Kida, S. 2001 Periodic motion embedded in plane Couette turbulence: regeneration cycle and burst. J. Fluid Mech. 449, 291300.Google Scholar
Kawahara, G., Uhlmann, M. & Van Veen, L. 2012 The significance of simple invariant solutions in turbulent flows. Annu. Rev. Fluid Mech. 44, 203225.Google Scholar
Kerswell, R. R. 2018 Nonlinear nonmodal stability theory. Annu. Rev. Fluid Mech. 50 (1), 319345.Google Scholar
Krauskopf, B. & Osinga, H. M. 2007 Computing invariant manifolds via the continuation of orbit segments. In Numerical Continuation Methods for Dynamical Systems, pp. 117154. Springer.Google Scholar
Krauskopf, B., Osinga, H. M., Doedel, E. J., Henderson, M. E., Guckenheimer, J., Vladimirsky, A., Dellnitz, M. & Junge, O. 2005 A survey of methods for computing (un) stable manifolds of vector fields. Intl J. Bifurcation Chaos 15 (3), 763791.Google Scholar
Kreilos, T., Veble, G., Schneider, T. M & Eckhardt, B. 2013 Edge states for the turbulence transition in the asymptotic suction boundary layer. J. Fluid Mech. 726, 100122.Google Scholar
Lan, Y. & Cvitanović, P. 2004 Variational method for finding periodic orbits in a general flow. Phys. Rev. E 69 (1), 016217.Google Scholar
Nagata, M. 1990 Three-dimensional finite-amplitude solutions in plane Couette flow: bifurcation from infinity. J. Fluid Mech. 217, 519527.Google Scholar
Pringle, C. C. T. & Kerswell, R. R. 2010 Using nonlinear transient growth to construct the minimal seed for shear flow turbulence. Phys. Rev. Lett. 105, 154502.Google Scholar
Schneider, T. M., Gibson, J. F., Lagha, M., De Lillo, F. & Eckhardt, B. 2008 Laminar-turbulent boundary in plane Couette flow. Phys. Rev. E 78, 037301.Google Scholar
Suri, B., Tithof, J., Grigoriev, R. O. & Schatz, M. F. 2017 Forecasting fluid flows using the geometry of turbulence. Phys. Rev. Lett. 118 (11), 114501.Google Scholar
Toh, S. & Itano, T. 2003 A periodic-like solution in channel flow. J. Fluid Mech. 481, 6776.Google Scholar
Van Veen, L. & Kawahara, G. 2011 Homoclinic tangle on the edge of shear turbulence. Phys. Rev. Lett. 107 (11), 114501.Google Scholar
Van Veen, L., Kawahara, G. & Atsushi, M. 2011 On matrix-free computation of 2D unstable manifolds. SIAM J. Sci. Comput. 33 (1), 2544.Google Scholar
Viswanath, D. 2007 Recurrent motions within plane Couette turbulence. J. Fluid Mech. 580, 339358.Google Scholar
Waleffe, F. 2003 Homotopy of exact coherent structures in plane shear flows. Phys. Fluids 15 (6), 15171534.Google Scholar
Wedin, H. & Kerswell, R. R. 2004 Exact coherent structures in pipe flow: traveling wave solutions. J. Fluid Mech. 508, 333371.Google Scholar
Willis, A. P., Cvitanović, P. & Avila, M. 2013 Revealing the state space of turbulent pipe flow by symmetry reduction. J. Fluid Mech. 721, 514540.Google Scholar

Farano et al. supplementary movie

All 9 heteroclinic connections. (Left) State-space projection onto the 3D orthonormal basis. Symbols represent equilibria. (Right) Streamwise averaged velocity field, color represent streamwise velocity (blue negative, red positive) and arrows represent in-plane velocity.

Download Farano et al. supplementary movie(Video)
Video 33 MB
Supplementary material: PDF

Farano et al. supplementary material

Supplementary data

Download Farano et al. supplementary material(PDF)
PDF 5.2 MB