Skip to main content Accessibility help

Conjugated liquid layers driven by the short-wavelength Bénard–Marangoni instability: experiment and numerical simulation

  • Iman Nejati (a1), Mathias Dietzel (a1) and Steffen Hardt (a1)


The coupled dynamics of two conjugated liquid layers of disparate thicknesses, which coat a solid substrate and are subjected to a transverse temperature gradient, is investigated. The upper liquid layer evolves under the short-wavelength Bénard–Marangoni instability, whereas the lower, much thinner film undergoes a shear-driven long-wavelength deformation. Although the lubricating film should reduce the viscous stresses acting on the up to one hundred times thicker upper layer by only 10 %, it is found that the critical Marangoni number of marginal stability may be as low as if a stress-free boundary condition were applied at the bottom of the upper layer, i.e. much lower than the classical value of 79.6 known for a single film. Furthermore, it is experimentally verified that the deformation of the liquid–liquid interface, albeit small, has a non-negligible effect on the temperature distribution along the liquid–gas interface of the upper layer. This stabilizes the hexagonal pattern symmetry towards external disturbances and indicates a two-way coupling of the different layers. The experiments also demonstrate how convection patterns formed in a liquid film can be used to pattern a second conjugated film. The experimental findings are verified by a numerical model of the coupled layers.


Corresponding author

Email address for correspondence:


Hide All
Andereck, C. D., Colovas, P. W., Degen, M. M. & Renardy, Y. Y. 1998 Instabilities in two layer Rayleigh–Bénard convection: overview and outlook. Intl J. Engng Sci. 36 (1214), 14511470.
Bénard, H. 1900 Étude expérimentale des courants de convection dans une nappe liquide. Régime permanent: tourbillons cellulaires. J. Phys. Theor. Appl. 9 (1), 513524.
Bestehorn, M. & Busse, F. H. 2006 Hydrodynamik und Strukturbildung: Mit einer kurzen Einführung in die Kontinuumsmechanik. Physica.
Boeck, T. & Thess, A. 1997 Inertial Bénard–Marangoni convection. J. Fluid Mech. 350, 149175.
Burgess, J. M., Juel, A., McCormick, W. D., Swift, J. B. & Swinney, H. L. 2001 Suppression of dripping from a ceiling. Phys. Rev. Lett. 86 (7), 12031206.
Chandrasekhar, S. 1970 Hydrodynamic and Hydromagnetic Stability. Clarendon Press.
Colinet, P. & Legros, J. C. 1994 On the Hopf bifurcation occurring in the two layer Rayleigh–Bénard convective instability. Phys. Fluids 6 (8), 26312639.
Colinet, P., Legros, J. C. & Velarde, M. G. 2005 Instability Modes in Bénard Layers. pp. 3984. Wiley-VCH.
Colinet, P. & Nepomnyashchy, A. 2010 Pattern Formation at Interfaces. Springer.
Comsol 2014 Comsol Multiphysics® . COMSOL, Inc.
Cross, M. & Hohenberg, P. 1993 Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 8511112.
Davis, S. H. 1987 Thermocapillary instabilities. Annu. Rev. Fluid Mech. 19 (1), 403435.
Degen, M. M., Colovas, P. W. & Andereck, C. D. 1998 Time-dependent patterns in the two-layer Rayleigh–Bénard system. Phys. Rev. E 57, 66476659.
Dietzel, M. & Troian, S. M. 2010 Mechanism for spontaneous growth of nanopillar arrays in ultrathin films subject to a thermal gradient. J. Appl. Phys. 108 (7), 074308.
Dutton, T. W., Pate, L. R. & Hollingsworth, D. K. 2010 Imaging of surface-tension-driven convection using liquid crystal thermography. J. Heat Transfer 132 (12), 121601.
Eckert, K., Bestehorn, M. & Thess, A. 1998 Square cells in surface-tension-driven Bénard convection: experiment and theory. J. Fluid Mech. 356, 155197.
Golovin, A. A., Nepomnyashchy, A. A. & Pismen, L. M. 1994 Interaction between short-scale Marangoni convection and long-scale deformational instability. Phys. Fluids 6 (1), 3448.
Hossain, M. Z. & Floryan, J. M. 2014 Natural convection in a fluid layer periodically heated from above. Phys. Rev. E 90, 023015.
Hurle, D. T. J. 1981 Surface aspects of crystal growth from the melt. Adv. Colloid Interface 15 (2), 101130.
Israelachvili, J. N. 2011 Intermolecular and Surface Forces: Revised Third Edition. Elsevier Science.
Kang, Q., Zhang, J. F., Hu, L. & Duan, L. 2003 Experimental study on Bénard–Marangoni convection by PIV and TCL. Proc. SPIE 5058, 155161.
Koschmieder, E. L. & Biggerstaff, M. I. 1986 Onset of surface-tension-driven Bénard convection. J. Fluid Mech. 167, 4964.
McLeod, E., Liu, Y. & Troian, S. M. 2011 Experimental verification of the formation mechanism for pillar arrays in nanofilms subject to large thermal gradients. Phys. Rev. Lett. 106 (17), 175501.
Merkt, D. & Bestehorn, M. 2012 Pattern formation in anticonvective systems. Fluid Dyn. Res. 44 (3), 031413.
Merkt, D., Pototsky, A., Bestehorn, M. & Thiele, U. 2005 Long-wave theory of bounded two-layer films with a free liquid–liquid interface: short- and long-time evolution. Phys. Fluids 17 (6), 064104.
Merzkirch, W. 1987 Flow Visualization. Academic.
Mills, K. C. & Keene, B. J. 1990 Factors affecting variable weld penetration. Intl. Mater. Rev. 35 (1), 185216.
Nicolis, G. & Prigogine, I. 1977 Self-Organization in Nonequilibrium Systems: From Dissipative Structures to Order Through Fluctuations. Wiley.
Oprisan, A., Hegseth, J. J., Smith, G. M., Lecoutre, C., Garrabos, Y. & Beysens, D. A. 2011 Dynamics of a wetting layer and Marangoni convection in microgravity. Phys. Rev. E 84, 021202.
Oron, A., Davis, S. H. & Bankoff, S. G. 1997 Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69, 931980.
Pearson, J. R. A. 1958 On convection cells induced by surface tension. J. Fluid Mech. 4, 489500.
Pototsky, A., Bestehorn, M., Merkt, D. & Thiele, U. 2005 Morphology changes in the evolution of liquid two-layer films. J. Chem. Phys. 122 (22), 224711.
Prakash, A., Yasuda, K., Otsubo, F., Kuwahara, K. & Doi, T. 1997 Flow coupling mechanisms in two-layer Rayleigh–Bénard convection. Exp. Fluids 23 (3), 252261.
Rahal, S., Cerisier, P. & Azuma, H. 2007 Bénard–Marangoni convection in a small circular container: influence of the Biot and Prandtl numbers on pattern dynamics and free surface deformation. Exp. Fluids 43 (4), 547554.
Rasenat, S., Busse, F. H. & Rehberg, I. 1989 A theoretical and experimental study of double-layer convection. J. Fluid Mech. 199, 519540.
Schatz, M. F. & Neitzel, G. P. 2001 Experiments on thermocapillary instabilities. Annu. Rev. Fluid Mech. 33 (1), 93127.
Schatz, M. F., VanHook, S. J., McCormick, W. D., Swift, J. B. & Swinney, H. L. 1995 Onset of surface-tension-driven Bénard convection. Phys. Rev. Lett. 75, 19381941.
Smith, K. A. 1966 On convective instability induced by surface-tension gradients. J. Fluid Mech. 24, 401414.
Thess, A. & Bestehorn, M. 1995 Planform selection in Bénard–Marangoni convection: l hexagons versus $g$ hexagons. Phys. Rev. E 52, 63586367.
Trice, J., Favazza, C., Thomas, D., Garcia, H., Kalyanaraman, R. & Sureshkumar, R. 2008 Novel self-organization mechanism in ultrathin liquid films: theory and experiment. Phys. Rev. Lett. 101 (1), 017802.
VanHook, S. J., Schatz, M. F., Swift, J. B., McCormick, W. D. & Swinney, H. L. 1997 Long-wavelength surface-tension-driven Bénard convection: experiment and theory. J. Fluid Mech. 345, 4578.
Vécsei, M., Dietzel, M. & Hardt, S. 2014 Coupled self-organization: thermal interaction between two liquid films undergoing long-wavelength instabilities. Phys. Rev. E 89, 053018.
Welander, P. 1964 Convective instability in a two-layer fluid heated uniformly from above. Tellus 16 (3), 349358.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO

Conjugated liquid layers driven by the short-wavelength Bénard–Marangoni instability: experiment and numerical simulation

  • Iman Nejati (a1), Mathias Dietzel (a1) and Steffen Hardt (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.