Hostname: page-component-65f69f4695-2qqrh Total loading time: 0 Render date: 2025-06-27T18:52:06.806Z Has data issue: false hasContentIssue false

Constructing turbulence models using the kinetic Fokker–Planck equation

Published online by Cambridge University Press:  15 May 2025

Peng Luan
Affiliation:
School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, PR China
Haoyuan Zhang
Affiliation:
State Key Laboratory of Aerodynamics, Mianyang 621000, PR China Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, PR China
Jun Zhang*
Affiliation:
School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, PR China
*
Corresponding author: Jun Zhang, jun.zhang@buaa.edu.cn

Abstract

This study presents a novel approach for constructing turbulence models using the kinetic Fokker–Planck equation. By leveraging the inherent similarities between Brownian motion and turbulent dynamics, we formulate a Fokker–Planck equation tailored for turbulence at the hydrodynamic level. In this model, turbulent energy plays a role analogous to temperature in molecular thermodynamics, and the large-scale structures are characterised by a turbulent relaxation time. This model aligns with the framework of Pope’s generalised Langevin model, with the first moment recovering the Reynolds-averaged Navier–Stokes (RANS) equations, and the second moment yielding a partially modelled Reynolds stress transport equation. Utilising the Chapman–Enskog expansion, we derive asymptotic solutions for this turbulent Fokker–Planck equation. With an appropriate choice of relaxation time, we obtain a linear eddy viscosity model at first order, and a quadratic Reynolds stress constitutive relationship at second order. Comparative analysis of the coefficients of the quadratic expression with typical nonlinear viscosity models reveals qualitative consistency. To further validate this kinetic-based nonlinear viscosity model, we integrate it as a RANS model within computational fluid dynamics codes, and calculate three typical cases. The results demonstrate that this quadratic eddy viscosity model outperforms the linear model and shows comparability to a cubic model for two-dimensional flows, without the introduction of ad hoc parameters in the Reynolds stress constitutive relationship.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

These two authors contributed equally to this work.

References

Apsley, D.D. & Leschziner, M.A. 1998 A new low-Reynolds-number nonlinear two-equation turbulence model for complex flows. Intl J. Heat Fluid Flow 19 (3), 209222.CrossRefGoogle Scholar
Boussinesq, J. 1870 Essai théorique sur les lois trouvées expérimentalement par M. Bazin pour l’écoulement uniforme de l’eau dans les canaux découverts. C. R. Acad. Sci. Paris 71, 389393.Google Scholar
Cercignani, C. 1988 The Boltzmann Equation. Springer.CrossRefGoogle Scholar
Chapman, S. & Cowling, T.G. 1990 The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases. Cambridge University Press.Google Scholar
Chen, H., Kandasamy, S., Orszag, S., Shock, R., Succi, S. & Yakhot, V. 2003 Extended Boltzmann kinetic equation for turbulent flows. Science 301 (5633), 633636.CrossRefGoogle ScholarPubMed
Chen, H., Orszag, S.A., Staroselsky, I. & Succi, S. 2004 Expanded analogy between Boltzmann kinetic theory of fluids and turbulence. J. Fluid Mech. 519, 301314.CrossRefGoogle Scholar
Chen, H., Staroselsky, I., Sreenivasan, K. R., & Yakhot, V. 2023 Average turbulence dynamics from a one-parameter kinetic theory. Atmosphere 14 (7), 1109.CrossRefGoogle Scholar
Chen, H., Staroselsky, I., Sreenivasan, K.R., & Yakhot, V. 2024 Average turbulence dynamics from a one-parameter kinetic theory: Estimation of the relaxation time. Phys. Fluids 36 (3), 035156.CrossRefGoogle Scholar
Chong, K.L., Shi, J.-Q., Ding, G.-Y., Ding, S.-S., Lu, H.-Y., Zhong, J.-Q. & Xia, K.-Q. 2020 Vortices as Brownian particles in turbulent flows. Sci. Adv. 6 (34), eaaz1110.CrossRefGoogle ScholarPubMed
Chung, P.M. 1969 A simplified statistical model of turbulent, chemically reacting shear flows. AIAA J. 7 (10), 19821991.CrossRefGoogle Scholar
Craft, T., Launder, B. & Suga, K. 1996 Development and application of a cubic eddy-viscosity model of turbulence. Intl J. Heat Fluid Flow 17 (2), 108115.CrossRefGoogle Scholar
Driver, D.M. & Seegmiller, H. 1985 Features of a reattaching turbulent shear layer in divergent channelflow. AIAA J. 23 (2), 163171.CrossRefGoogle Scholar
Durbin, P.A. 2018 Some recent developments in turbulence closure modeling. Annu. Rev. Fluid Mech. 50 (1), 77103.CrossRefGoogle Scholar
Friedrich, R. & Bertolotti, F. 1996 Compressibility effects due to turbulent fluctuations. Appl. Sci. Res. 57 (3–4), 165194.CrossRefGoogle Scholar
Fu, S., Guo, Y., Qian, W. & Wang, C. 2003 Recent progress in nonlinear eddy-viscosity turbulence modeling. Acta Mechanica Sin. 19 (5), 409419.Google Scholar
Fu, S. & Pope, S. 1994 Computation of recirculating swirling flow with the GLM Reynolds stress closure. Acta Mechanica Sin. 10 (2), 110120.Google Scholar
Fu, S., Wang, C. & Guo, Y. 2011 On the minimal representation of non-linear eddy-viscosity models. J. Turbul. 12, N47.CrossRefGoogle Scholar
Fu, S., Wang, C., Rung, T. & Thiele, F. 1997 Validation of the realizable quadratic eddy-viscosity model in turbulent secondary flow. In International Symposium on Computational Fluid Dynamics, pp. 429434. International Academic.Google Scholar
Fu, S. & Wang, L. 2013 RANS modeling of high-speed aerodynamic flow transition with consideration of stability theory. Prog. Aerosp. Sci. 58, 3659.CrossRefGoogle Scholar
Gallis, M., Bitter, N., Koehler, T., Torczynski, J., Plimpton, S. & Papadakis, G. 2017 Molecular-level simulations of turbulence and its decay. Phys. Rev. Lett. 118 (6), 064501.CrossRefGoogle ScholarPubMed
Gatski, T.B. & Speziale, C.G. 1993 On explicit algebraic stress models for complex turbulent flows. J. Fluid Mech. 254, 5978.CrossRefGoogle Scholar
Girimaji, S.S. 2007 Boltzmann kinetic equation for filtered fluid turbulence. Phys. Rev. Lett. 99 (3), 034501.CrossRefGoogle ScholarPubMed
Greenshields, C.J., Weller, H.G., Gasparini, L. & Reese, J.M. 2010 Implementation of semi-discrete, non-staggered central schemes in a colocated, polyhedral, finite volume framework, for high-speed viscous flows. Intl J. Numer. Meth. Fluids 63 (1), 121.CrossRefGoogle Scholar
Hanjalić, K. 1994 Advanced turbulence closure models: a view of current status and future prospects. Intl J. Heat Fluid Flow 15 (3), 178203.CrossRefGoogle Scholar
Haworth, D.C. & Pope, S.B. 1986 A generalized Langevin model for turbulent flows. Phys. Fluids 29 (2), 387405.CrossRefGoogle Scholar
Haworth, D.C. & Pope, S.B. 1987 A pdf modeling study of self-similar turbulent free shear flows. Phys. Fluids 30 (4), 10261044.CrossRefGoogle Scholar
Heinz, S. 2003 Statistical Mechanics of Turbulent Flows. Springer.CrossRefGoogle Scholar
Heinz, S. 2004 Molecular to fluid dynamics: the consequences of stochastic molecular motion. Phys. Rev. E: Stat. Nonlinear Soft Matt. Phys. 70 (3), 036308.CrossRefGoogle ScholarPubMed
Heinz, S. 2007 Unified turbulence models for LES and RANS, FDF and PDF simulations. Theor. Comp. Fluid Dyn. 21 (2), 99118.CrossRefGoogle Scholar
Huang, P.G., Coleman, G.N. & Bradshaw, P. 1995 Compressible turbulent channel flows: DNS results and modelling. J. Fluid Mech. 305, 185218.CrossRefGoogle Scholar
Jasak, H. Jemcov, A., & Tuković, Z. 2007 Openfoam: a C++ library for complex physics simulations. In Proceedings of the International Workshop on Coupled Methods in Numerical Dynamics. str. 4766. Fakultet strojarstva i brodogradnje Sveučilišta u Zagrebu.Google Scholar
Jenny, P., Torrilhon, M. & Heinz, S. 2010 A solution algorithm for the fluid dynamic equations based on a stochastic model for molecular motion. J. Comput. Phys. 229 (4), 10771098.CrossRefGoogle Scholar
Kim, K.H., Kim, C. & Rho, O.-H. 2001 Methods for the accurate computations of hypersonic flows: I. AUSMPW+ scheme. J. Comput. Phys. 174 (1), 3880.CrossRefGoogle Scholar
Kirkwood, J.G. 1946 The statistical mechanical theory of transport processes I. General theory. J. Chem. Phys. 14 (3), 180201.CrossRefGoogle Scholar
Kirkwood, J.G., Buff, F.P. & Green, M.S. 1949 The statistical mechanical theory of transport processes. III. The coefficients of shear and bulk viscosity of liquids. J. Chem. Phys. 17 (10), 988994.CrossRefGoogle Scholar
Kolmogorov, A.N. 1962 A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 13 (1), 8285.CrossRefGoogle Scholar
Kussoy, M.I. & Horstman, C.C. 1989 Documentation of two- and three-dimensional hypersonic shock wave/turbulent boundary layer interaction flows. No. NASA-TM-101075. NASA Ames Research Center.Google Scholar
Kussoy, M.I. & Horstman, K. 1991 Documentation of Two- and Three-Dimensional Shock-Wave/Turbulent-Boundary-Layer Interaction Flows at Mach 8.2. NASA Ames Research Center Technical Report.Google Scholar
Langevin, P. 1908 On the theory of Brownian motion. C. R. Acad Sci. Paris 146, 530.Google Scholar
Launder, B.E. 1996 An introduction to single-point closure methodology. In Simulation and Modeling of Turbulent Flows (ed. T.B Gatski, M. Hussaini & J.L Lumley), online edn. Oxford Academic.CrossRefGoogle Scholar
Launder, B.E., Reece, G.J. & Rodi, W. 1975 Progress in the development of a Reynolds-stress turbulence closure. J. Fluid Mech. 68 (3), 537566.CrossRefGoogle Scholar
Launder, B.E. & Sharma, B.I. 1974 Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Lett. Heat Mass Transfer 1 (2), 131137.CrossRefGoogle Scholar
Launder, B.E. & Spalding, D.B. 1983 The numerical computation of turbulent flows. In Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion, pp. 96116. Elsevier.CrossRefGoogle Scholar
Li, D., Komperda, J., Peyvan, A., Ghiasi, Z. & Mashayek, F. 2022 Assessment of turbulence models using DNS data of compressible plane free shear layer flow. J. Fluid Mech. 931, A10.CrossRefGoogle Scholar
Malaspinas, O. & Sagaut, P. 2012 Consistent subgrid scale modelling for lattice Boltzmann methods. J. Fluid Mech. 700, 514542.CrossRefGoogle Scholar
McMullen, R.M., Krygier, M.C., Torczynski, J.R. & Gallis, M.A. 2022 Navier–Stokes equations do not describe the smallest scales of turbulence in gases. Phys. Rev. Lett. 128 (11), 114501.CrossRefGoogle Scholar
Menter, F. 1997 Eddy viscosity transport equations and their relation to the k- $\varepsilon$ model. J. Fluids Engng 119 (4), 876884.CrossRefGoogle Scholar
Mishra, A. & Girimaji, S. 2016 Manufactured turbulence with Langevin equations. arXiv preprint arXiv: 1611.03834.Google Scholar
Moin, P. & Mahesh, K. 1998 Direct numerical simulation: a tool in turbulence research. Annu. Rev. Fluid Mech. 30 (1), 539578.CrossRefGoogle Scholar
Monin, A.S. & Yaglom, A.M. 2013 Statistical fluid mechanics. In Mechanics of Turbulence, vol. 2. Courier Corporation.Google Scholar
Myong, H.K. & Kasagi, N. 1990 A new approach to the improvement of k- $\varepsilon$ turbulence model for wall-bounded shear flows. JSME Intl J. 2 33 (1), 6372.Google Scholar
Nisizima, S. & Yoshizawa, A. 1987 Turbulent channel and Couette flows using an anisotropic k-epsilon model. AIAA J. 25 (3), 414420.CrossRefGoogle Scholar
Pope, S.B. 1975 A more general effective-viscosity hypothesis. J. Fluid Mech. 72 (2), 331340.CrossRefGoogle Scholar
Pope, S.B. 1985 PDF methods for turbulent reactive flows. Prog. Energy Combust. 11 (2), 119192.CrossRefGoogle Scholar
Pope, S.B. 2001 Turbulent flows. Meas. Sci. Technol. 12 (11), 20202021.CrossRefGoogle Scholar
Prandtl, L. 1925 7. Bericht über untersuchungen zur ausgebildeten turbulenz. J. Appl. Maths Mech. 5 (2), 136139.Google Scholar
Reynolds, O. 1895 IV. On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Phil. Trans. R. Soc. Lond. A 186, 123164.Google Scholar
Righi, M. 2016 A gas-kinetic scheme for turbulent flow. Flow Turbul. Combust. 97 (1), 121139.CrossRefGoogle Scholar
Rotta, J.C. 1951 Statistische theorie nichthomogener turbulenz. Zeitschrift für Physik 129 (6), 547572.CrossRefGoogle Scholar
Rubinstein, R. & Barton, J.M. 1990 Nonlinear Reynolds stress models and the renormalization group. Phys. Fluids A: Fluid Dyn. 2 (8), 14721476.CrossRefGoogle Scholar
Rumsey, C.L. 2010 Compressibility considerations for k- $\omega$ turbulence models in hypersonic boundary-layer applications. J. Spacecr. Rockets 47 (1), 1120.CrossRefGoogle Scholar
Rung, T., Thiele, F. & Fu, S. 1998 On the realizability of nonlinear stress–strain relationships for Reynolds stress closures. Flow Turbul. Combust. 60 (4), 333359.CrossRefGoogle Scholar
Samiee, M., Akhavan-Safaei, A. & Zayernouri, M. 2020 A fractional subgrid-scale model for turbulent flows: Theoretical formulation and a priori study. Phys. Fluids 32 (5), 055102.CrossRefGoogle Scholar
Sarkar, S. 1995 The stabilizing effect of compressibility in turbulent shear flow. J. Fluid Mech. 282, 163186.CrossRefGoogle Scholar
Sarkar, S., Erlebacher, G., Hussaini, M.Y. & Kreiss, H.O. 1991 The analysis and modelling of dilatational terms in compressible turbulence. J. Fluid Mech. 227, 473493.CrossRefGoogle Scholar
Shih, T.-H., Zhu, J. & Lumley, J.L. 1993 A realizable Reynolds stress algebraic equation model. Symposium on turbulence shear flows. No. CMOTT-92-14. National Aeronautics and Space Administration.Google Scholar
Singh, S.K. & Ansumali, S. 2015 Fokker–Planck model of hydrodynamics. Phys. Rev. E 91 (3), 033303.CrossRefGoogle ScholarPubMed
So, R.M.C., Gatski, T.B. & Sommer, T.P. 1998 Morkovin hypothesis and the modeling of wall-bounded compressible turbulent flows. AIAA J. 36 (9), 15831592.CrossRefGoogle Scholar
Spalart, P. & Allmaras, S. 1992 A one-equation turbulence model for aerodynamic flows. In 30th Aerospace Sciences Meeting and Exhibit, 06 January 1992 - 09 January 1992 Reno, NV, U.S.A., pp. 439. https://doi.org/10.2514/6.1992-439 CrossRefGoogle Scholar
Speziale, C.G. 1987 On nonlinear K-l and K- $\varepsilon$ models of turbulence. J. Fluid Mech. 178, 459475.CrossRefGoogle Scholar
Succi, S. 2020 Towards a self-consistent Boltzmann’s kinetic model of fluid turbulence. J. Turbul. 21 (7), 375385.CrossRefGoogle Scholar
Tavoularis, S. & Corrsin, S. 1981 Experiments in nearly homogenous turbulent shear flow with a uniform mean temperature gradient. Part 1. J. Fluid Mech. 104, 311347.CrossRefGoogle Scholar
Taylor, G.I. 1935 Statistical theory of turbulence. Proc. R. Soc. Lond. A: Math. Phys. Sci. 151 (873), 421444.CrossRefGoogle Scholar
Thomson, W. 1887 XLV. On the propagation of laminar motion through a turbulently moving inviscid liquid. Lond. Edinburgh Dublin Phil. Mag. J. Sci. 24 (149), 342353.CrossRefGoogle Scholar
van Albada, G.D., Van Leer, B. & Roberts, Jr W.W. 1982 A comparative study of computational methods in cosmic gas dynamics. Astron. Astrophys. 108 (1), 7684.Google Scholar
Vreman, A.W., Sandham, N.D. & Luo, K.H. 1996 Compressible mixing layer growth rate and turbulence characteristics. J. Fluid Mech. 320, 235258.CrossRefGoogle Scholar
Wallin, S. & Johansson, A.V. 2000 An explicit algebraic Reynolds stress model for incompressible and compressible turbulent flows. J. Fluid Mech. 403, 89132.CrossRefGoogle Scholar
Wang, L. & Fu, S. 2011 Development of an intermittency equation for the modeling of the supersonic/hypersonic boundary layer flow transition. Flow Turbul. Combust. 87 (1), 165187.CrossRefGoogle Scholar
Wilcox, D.C. 1998 Turbulence Modeling for CFD. DCW Industries.Google Scholar
Wilcox, D.C. 2008 Formulation of the k- $\omega$ turbulence model revisited. AIAA J. 46 (11), 28232838.CrossRefGoogle Scholar
Yakhot, V. 2007 Turbulence models generator. arXiv preprint arXiv: 0706.4451.Google Scholar
Yakhot, V., Orszag, S.A., Thangam, S., Gatski, T.B. & Speziale, C.G. 1992 Development of turbulence models for shear flows by a double expansion technique. Phys. Fluids A: Fluid Dyn. 4 (7), 15101520.CrossRefGoogle Scholar
Yeung, P.-K. & Pope, S.B. 1989 Lagrangian statistics from direct numerical simulations of isotropic turbulence. J. Fluid Mech. 207, 531586.CrossRefGoogle Scholar
Yoshizawa, A. 1984 Statistical analysis of the deviation of the Reynolds stress from its eddy-viscosity representation. Phys. Fluids 27 (6), 13771387.CrossRefGoogle Scholar
Zhang, H.Y. 2021 Turbulence modelling for aerodynamic heating in hypersonic flows. PhD Dissertation, Department of Mechanical, Aero-space and Civil Engineering, University of Manchester.Google Scholar
Zhang, H., Craft, T. & Iacovides, H. 2022 Application of linear and nonlinear two-equation turbulence models in hypersonic flows. AIAA J. 60 (6), 34723486.CrossRefGoogle Scholar