Skip to main content Accessibility help
×
×
Home

Convection-driven dynamos in a rotating plane layer

  • CHRIS A. JONES (a1) and PAUL H. ROBERTS (a1) (a2)
Abstract

The plane layer Childress–Soward dynamo model, consisting of a rotating layer of electrically conducting fluid between horizontal planes heated from below, is studied. Solutions periodic in the horizontal directions are sought, with electrically insulating boundary conditions applied. The large Prandtl number limit is used.

Fully three-dimensional convection-driven dynamos have been studied numerically for this problem. Both the kinematic and the magnetically saturated regimes are studied, and a simple model of the dynamo mechanism is proposed. The dependence of the dynamo on the Rayleigh number, Ekman number and diffusivity ratio is studied, and the role of Taylor's constraint in low Ekman number convection-driven dynamos is considered.

Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed