Skip to main content
×
Home

The cost of swimming in generalized Newtonian fluids: experiments with C. elegans

  • D. A. Gagnon (a1) and P. E. Arratia (a1)
Abstract

Numerous natural processes are contingent on microorganisms’ ability to swim through fluids with non-Newtonian rheology. Here, we use the model organism Caenorhabditis elegans and tracking methods to experimentally investigate the dynamics of undulatory swimming in shear-thinning fluids. Theory and simulation have proposed that the cost of swimming, or mechanical power, should be lower in a shear-thinning fluid compared to a Newtonian fluid of the same zero-shear viscosity. We aim to provide an experimental investigation into the cost of swimming in a shear-thinning fluid from (i) an estimate of the mechanical power of the swimmer and (ii) the viscous dissipation rate of the flow field, which should yield equivalent results for a self-propelled low Reynolds number swimmer. We find the cost of swimming in shear-thinning fluids is less than or equal to the cost of swimming in Newtonian fluids of the same zero-shear viscosity; furthermore, the cost of swimming in shear-thinning fluids scales with a fluid’s effective viscosity and can be predicted using fluid rheology and simple swimming kinematics. Our results agree reasonably well with previous theoretical predictions and provide a framework for understanding the cost of swimming in generalized Newtonian fluids.

Copyright
Corresponding author
Email address for correspondence: parratia@seas.upenn.edu
References
Hide All
Alexander M. 1991 Introduction to Soil Microbiology. R.E. Krieger.
Brenner S. 1974 The genetics of Caenorhabditis elegans . Genetics 77, 7194.
Byerly L., Cassada R. C. & Russell R. L. 1976 The life cycle of the nematode Caenorhabditis elegans. I: wild-type growth and reproduction. Dev. Biol. 51, 2333.
Carreau P. J., DeKee D. C. R. & Chhabra R. P. 1997 Rheology of Polymeric Systems. Hanser.
Celli J. P., Turner B. S., Afdhal N. H., Keates S., Ghiran I., Kelly C. P., Ewoldt R. H., McKinley G. H., So P., Erramilli S. et al. 2009 Heliobacter pylori moves through mucus by reducing mucin viscoelasticity. Proc. Natl Acad. Sci. USA 106, 1432114326.
Childress S. 1981 Mechanics of Swimming and Flying. Cambridge University Press.
Crocker J. C. & Grier D. G. 1996 Methods of digital video microscopy for colloidal studies. J. Colloid Interface Sci. 179, 298310.
Fauci L. J. & Dillon R. 2006 Biofluidmechanics of reproduction. Annu. Rev. Fluid Mech. 38, 371394.
Fu H. C., Shenoy V. B. & Powers T. R. 2010 Low-Reynolds-number swimming in gels. Eur. Phys. Lett. 91, 24002.
Fu H. C., Wolgemuth C. W. & Powers T. R. 2009 Swimming speeds of filaments in nonlinearly viscoelastic fluids. Phys. Fluids 21, 033102.
Gagnon D. A., Keim N. C. & Arratia P. E. 2014 Undulatory swimming in shear-thinning fluids: experiments with Caenorhabditis elegans . J. Fluid Mech. 758, R3.
Gagnon D. A., Shen X. N. & Arratia P. E. 2013 Undulatory swimming in fluids with polymer networks. Europhys. Lett. 104, 14004.
Guasto J. S., Johnson K. A. & Gollub J. P. 2010 Oscillatory flows induced by microorganisms swimming in two dimensions. Phys. Rev. Lett. 105, 168102.
Happel J. & Brenner H. 1983 Low Reynolds Number Hydrodynamics. Springer.
Harman M. W., Dunham-Ems S. M., Caimano M. J., Belperron A. A., Bockenstedt L. K., Fu H. C., Radolf J. D. & Wolgemuth C. W. 2012 The heterogenous motility of the Lyme disease spirochete in gelatin mimics dissemination through tissue. Proc. Natl Acad. Sci. USA 109, 30593064.
Jorgensen E. M. & Mango S. E. 2002 The art and design of genetic screens: Caenorhabditis elegans . Nat. Rev. Genet. 3, 622630.
Juarez G., Lu K., Sznitman J. & Arratia P. E. 2010 Motility of small nematodes in wet granular media. Europhys. Lett. 92 (4), 44002.
Katz D. F. & Berger S. A. 1980 Flagellar propulsion of human sperm in cervical mucus. Biorheology 17, 169175.
Krajacic P., Shen X. N., Purohit P. K., Arratia P. E. & Lamitina T. 2012 Biomechanical profiling of Caenorhabditis elegans motility. Genetics 191, 10151021.
Larson R. G. 1999 The Structure and Rheology of Complex Fluids. Oxford University Press.
Lauga E. 2007 Propulsion in a viscoelastic fluid. Phys. Fluids 19, 083104.
Lauga E. & Powers T. R. 2009 The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72, 096601.
Leshansky A. M. 2009 Enhanced low-Reynolds-number propulsion in heterogeneous viscous environments. Phys. Rev. E 80, 051911.
Li G. & Ardekani A. M. 2015 Undulatory swimming in non-Newtonian fluids. J. Fluid Mech. 784, R4.
Lighthill J. 1976 Flagellar hydrodynamics. SIAM Rev. 18, 161230.
Liu B., Powers T. R. & Breuer K. S. 2011 Force-free swimming of a model helical flagellum in viscoelastic fluids. Proc. Natl Acad. Sci. USA 108, 1951619520.
Montenegro-Johnson T. D., Smith A. A., Smith D. J., Loghin D. & Blake J. R. 2012 Modelling the fluid mechanics of cilia and flagella in reproduction and development. Eur. Phys. J. E 35, 111.
Montenegro-Johnson T. D., Smith D. J. & Loghin D. 2013 Physics of rheologically enhanced propulsion: different strokes in generalized Stokes. Phys. Fluids 25, 081903.
Patteson A. E., Gopinath A., Goulian M. & Arratia P. E. 2015 Running and tumbling with E. coli in polymeric solutions. Sci. Rep. 5, 15761.
Purcell E. M. 1977 Life at low Reynolds number. Am. J. Phys. 45 (1), 311.
Qin B., Gopinath A., Yang J., Gollub J. P. & Arratia P. E. 2015 Flagellar kinematics and swimming of algal cells in viscoelastic fluids. Sci. Rep. 5, 9190.
Rankin C. H. 2002 From gene to identified neuron behavior in Caenorhabditis elegans . Nat. Rev. Genet. 3, 622630.
Shen X. N. & Arratia P. E. 2011 Undulatory swimming in viscoelastic fluids. Phys. Rev. Lett. 106, 208101.
Silverman G. A., Luke C. J., Bhatia S. R., Long O. S., Vetica A. C., Perlmutter D. H. & Pak S. C. 2009 Modeling molecular and cellular aspects of human disease using the nematode Caenorhabditis elegans . Pediatr. Res. 65, 1018.
Spagnolie S. E.(Ed.) 2015 Complex Fluids in Biological Systems. Springer.
Sznitman J., Purohit P. K., Krajacic P., Lamitina T. & Arratia P. E. 2010a Material properties of Caenorhabditis elegans swimming at low Reynolds number. Biophys. J. 98, 617626.
Sznitman J., Shen X. N., Sznitman R. & Arratia P. E. 2010b Propulsive force measurements and flow behavior of undulatory swimmers at low Reynolds number. Phys. Fluids 22, 121901.
Taylor G. I. 1951 Analysis of the swimming of microscopic organisms. Proc. R. Soc. Lond. A 209 (1099), 447461.
Teran J., Fauci L. & Shelley M. 2010 Viscoelastic fluid response can increase the speed and efficiency of a free swimmer. Phys. Rev. Lett. 104, 038101.
Thomases B. & Guy R. D. 2014 Mechanisms of elastic enhancement and hindrance for finite-length undulatory swimmers in viscoelastic fluids. Phys. Rev. Lett. 113, 098102.
Vélez-Cordero J. N. & Lauga E. 2013 Waving transport and propulsion in a generalized Newtonian fluid. J. Non-Newtonian Fluid. 199, 3750.
White J. G., Southgate E., Thomson J. N. & Brenner S. 1986 The structure of the nervous system of the nematode Caenorhabditis elegans . Phil. Trans. R. Soc. Lond. B 314, 1340.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 17
Total number of PDF views: 115 *
Loading metrics...

Abstract views

Total abstract views: 370 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th November 2017. This data will be updated every 24 hours.