Skip to main content Accessibility help
×
Home

Coupled fluid and energy flow in fabrication of microstructured optical fibres

  • Yvonne M. Stokes (a1), Jonathan J. Wylie (a2) (a3) and M. J. Chen (a1)

Abstract

We consider the role of heating and cooling in the steady drawing of a long and thin viscous thread with an arbitrary number of internal holes of arbitrary shape. The internal holes and the external boundary evolve as a result of the axial drawing and surface-tension effects. The heating and cooling affects the evolution of the thread because both the viscosity and surface tension of the thread are assumed to be functions of the temperature. We use asymptotic techniques to show that, under a suitable transformation, this complicated three-dimensional free boundary problem can be formulated in such a way that the transverse aspect of the flow can be reduced to the solution of a standard Stokes flow problem in the absence of axial stretching. The solution of this standard problem can then be substituted into a system of three ordinary differential equations that completely determine the flow. We use this approach to develop a very simple numerical method that can determine the way that thermal effects impact on the drawing of threads by devices that either specify the fibre tension or the draw ratio. We also develop a numerical method to solve the inverse problem of determining the initial cross-sectional geometry, draw tension and, importantly, heater temperature to obtain a desired cross-sectional shape and change in cross-sectional area at the device exit. This precisely allows one to determine the pattern of air holes in the preform that will achieve the desired hole pattern in the stretched fibre.

Copyright

Corresponding author

Email address for correspondence: yvonne.stokes@adelaide.edu.au

References

Hide All
Boyd, K., Ebendorff-Heidepriem, H., Monro, T. M. & Munch, J. 2012 Surface tension and viscosity measurement of optical glasses using a scanning CO2 laser. Opt. Mater. Express 2 (8), 11011110.
Bradshaw-Hajek, B. H., Stokes, Y. M. & Tuck, E. O. 2004 Computation of extensional fall of slender viscous drops by a one-dimensional Eulerian method. SIAM J. Appl. Maths. 67, 11661182.
Buchak, P., Crowdy, D. G., Stokes, Y. M. & Ebendorff-Heidepriem, H. 2015 Elliptical pore regularisation of the inverse problem for microstructured optical fibre fabrication. J. Fluid Mech. 778, 538.
Chen, M. J., Stokes, Y. M., Buchak, P., Crowdy, D. G. & Ebendorff-Heidepriem, H. 2015 Microstructured optical fibre drawing with active channel pressurisation. J. Fluid Mech. 783, 137165.
Cummings, L. J. & Howell, P. D. 1999 On the evolution of non-axisymmetric viscous fibres with surface tension, inertia and gravity. J. Fluid Mech. 389, 361389.
Denn, M. M. 1980 Continuous drawing of liquids to form fibers. Annu. Rev. Fluid Mech. 12, 365387.
Dewynne, J. N., Howell, P. D. & Wilmott, P. 1994 Slender viscous fibres with inertia and gravity. Q. J. Mech. Appl. Maths 47, 541555.
Dewynne, J. N., Ockendon, J. R. & Wilmott, P. 1992 A systematic derivation of the leading-order equations for extensional flows in slender geometries. J. Fluid Mech. 244, 323338.
Fitt, A. D., Furusawa, K., Monro, T. M., Please, C. P. & Richardson, D. A. 2002 The mathematical modelling of capillary drawing for holey fibre manufacture. J. Engng Maths 43, 201227.
Forest, M. G. & Zhou, H. 2001 Unsteady analysis of thermal glass fiber drawing processes. Eur. J. Appl. Maths 12, 479496.
Griffiths, I. M. & Howell, P. D. 2007 The surface-tension-driven evolution of a two-dimensional annular viscous tube. J. Fluid Mech. 593, 181208.
Griffiths, I. M. & Howell, P. D. 2008 Mathematical modelling of non-axisymmetric capillary tube drawing. J. Fluid Mech. 605, 181206.
Gupta, G. & Schultz, W. W. 1998 Non-isothermal flows of Newtonian slender glass fibers. Intl J. Non-Linear Mech. 33, 151163.
He, D., Wylie, J. J., Huang, H. & Miura, R. M. 2016 Extension of a viscous thread with temperature-dependent viscosity and surface tension. J. Fluid Mech. 800, 720752.
Kaye, A. 1991 Convected coordinates and elongational flow. J. Non-Newtonian Fluid Mech. 40, 5577.
Matovich, M. A. & Pearson, J. R. A. 1969 Spinning a molten threadline. I&EC Fundamentals 8, 512520.
Modest, M. F. 2013 Radiative Heat Transfer, 3rd edn. Academic Press.
Scherer, G. W. 1992 Editorial comments on a paper by Gordon S. Fulcher. J. Am. Ceram. Soc. 75, 10601062.
Shah, Y. T. & Pearson, J. R. A. 1972a On the stability of nonisothermal fibre spinning. Ind. Engng Chem. Fundam. 11, 145149.
Shah, Y. T. & Pearson, J. R. A. 1972b On the stability of nonisothermal fibre spinning – general case. Ind. Engng Chem. Fundam. 11, 150153.
Shartsis, L. & Spinner, S. 1951 Surface tension of molten alkali silicates. J. Res. Natl. Bur. Stand. 46, 385390.
Stokes, Y. M., Bradshaw-Hajek, B. H. & Tuck, E. O. 2011 Extensional flow at low Reynolds number with surface tension. J. Engng Maths 70, 321331.
Stokes, Y. M., Buchak, P., Crowdy, D. G. & Ebendorff-Heidepriem, H. 2014 Drawing of micro-structured optical fibres: circular and non-circular tubes. J. Fluid Mech. 755, 176203.
Stokes, Y. M. & Tuck, E. O. 2004 The role of inertia in extensional fall of a viscous drop. J. Fluid Mech. 498, 205225.
Stokes, Y. M., Tuck, E. O. & Schwartz, L. W. 2000 Extensional fall of a very viscous fluid drop. Q. J. Mech. Appl. Maths 53, 565582.
Suman, B. & Kumar, S. 2009 Draw ratio enhancement in nonisothermal melt spinning. AIChE J. 55, 581593.
Taroni, M., Breward, C. J. W., Cummings, L. J. & Griffiths, I. M. 2013 Asymptotic solutions of glass temperature profiles during steady optical fibre drawing. J. Engng Maths 80, 120.
Tronnolone, H., Stokes, Y. M. & Ebendorff-Heidepriem, H. 2017 Extrusion of fluid cylinders of arbitrary shape with surface tension and gravity. J. Fluid Mech. 810, 127154.
Tronnolone, H., Stokes, Y. M., Foo, H. T. C. & Ebendorff-Heidepriem, H. 2016 Gravitational extension of a fluid cylinder with internal structure. J. Fluid Mech. 790, 308338.
Wylie, J. J., Bradshaw-Hajek, B. H. & Stokes, Y. M. 2016 The evolution of a viscous thread pulled with a prescribed speed. J. Fluid Mech. 795, 380408.
Wylie, J. J. & Huang, H. 2007 Extensional flows with viscous heating. J. Fluid Mech. 571, 359370.
Wylie, J. J., Huang, H. & Miura, R. M. 2007 Thermal instability in drawing viscous threads. J. Fluid Mech. 570, 116.
Wylie, J. J., Huang, H. & Miura, R. M. 2011 Stretching of viscous threads at low Reynolds numbers. J. Fluid Mech. 683, 212234.
Wylie, J. J., Huang, H. & Miura, R. M. 2015 Asymptotic analysis of a viscous thread extending under gravity. Physica D 313, 5160.
Yarin, A. L. 1986 Effect of heat removal on nonsteady regimes of fiber formation. J. Engng Phys. 50, 569575.
Yarin, A. L., Gospodinov, P. & Roussinov, V. I. 1994 Stability loss and sensitivity in hollow fiber drawing. Phys. Fluids 6 (4), 14541463.
Yarin, A. L., Rusinov, V. I., Gospodinov, P. & St. Radev 1989 Quasi one-dimensional model of drawing of glass micro capillaries and approximate solutions. Theor. Appl. Mech. 20 (3), 5562.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed