Hostname: page-component-cb9f654ff-qc88w Total loading time: 0 Render date: 2025-08-30T11:40:46.876Z Has data issue: false hasContentIssue false

Coupled modelling of turbulent forced thermal convection in anisotropic porous media

Published online by Cambridge University Press:  20 August 2025

Feixiong Rao
Affiliation:
College of Engineering, Zhejiang Normal University, Jinhua 321004, Zhejiang, PR China
Shengqi Zhang*
Affiliation:
Ningbo Key Laboratory of Advanced Manufacturing Simulation, Eastern Institute of Technology, Ningbo 315200, Zhejiang, PR China
*
Corresponding author: Shengqi Zhang, szhang@eitech.edu.cn

Abstract

The momentum dispersion model for flows in isotropic porous media has been validated and successfully applied by Rao & Jin (2022, J. Fluid Mech., vol. 937, A17). However, the anisotropic coupled models concerning heat–fluid–solid interactions in turbulent forced convection requires further development. This research proposes various anisotropic physical coefficient tensors to model the total drag ${R}_{i}$, interphase energy resistance $H$, momentum dispersion and thermal dispersion accounting for both anisotropic and isotropic scenarios. The effective physical coefficients of the Darcy–Forchheimer equation regarding ${R}_{i}$ are adapted to accommodate anisotropy. The heat transfer coefficient $h$ between the solid and fluid, despite being a scalar, is also required to depend on the local flow direction in anisotropic cases. Two scaling laws of $h$ with respect to a local Reynolds number ${\textit{Re}_{K}}$ are found: $h\sim \textit{Re}_K^2$ for the Darcy regime, and $h\sim \textit{Re}_{K}^{1/2}$ for the Forchheimer regime, with a transition at ${\textit{Re}_{K}}\sim 1$. The influence of momentum and thermal dispersions, along with the modelling errors of ${R}_{i}$ and $H$ originating from heterogeneity, are approximated using a second-order pseudo-stress tensor and a pseudo-flux vector, respectively. The effective viscosity and thermal diffusivity tensors are simplified into longitudinal and transverse components using tensor symmetries, and are assumed to rely mainly on another local Reynolds number ${\textit{Re}_{d}}$. Both components of the effective viscosity are positive in isotropic cases, whereas the longitudinal component may be negative in anisotropic cases, mainly serving as a compensation of overestimated drag. The coupled models are applied to simulate turbulent forced thermal convection in porous media with one or two length scales across a wide range of Reynolds numbers. The comparisons with direct numerical simulations results imply that the coupled macroscopic models can accurately predict not only statistically stationary distributions but also real-time changes in velocity and temperature.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aghaei-Jouybari, M., Seo, J.-H., Pinto, S., Cattafesta, L., Meneveau, C. & Mittal, R. 2024 Extended Darcy–Forchheimer law including inertial flow deflection effects. J. Fluid Mech. 980, A13.10.1017/jfm.2023.1083CrossRefGoogle Scholar
Bayly, B.J. & Yakhot, V. 1986 Positive- and negative-effective-viscosity phenomena in isotropic and anisotropic Beltrami flows. Phys. Rev. A 34 (1), 381.10.1103/PhysRevA.34.381CrossRefGoogle ScholarPubMed
Beavers, G.S., Sparrow, E.M. & Rodenz, D.E. 1973 Influence of bed size on the flow characteristics and porosity of randomly packed beds of spheres. J. Appl. Mech. 40 (3), 655.10.1115/1.3423067CrossRefGoogle Scholar
Bhaduri, S. 2021 The negative viscosity induces more disturbances in a flow, arXiv preprint arXiv: 2101.05045.Google Scholar
Braga, E.J. & de Lemos, M.J.S. 2005 Heat transfer in enclosures having a fixed amount of solid material simulated with heterogeneous and homogeneous models. Intl J. Heat Mass Transfer 48 (23–24), 47484765.10.1016/j.ijheatmasstransfer.2005.05.016CrossRefGoogle Scholar
Breugem, W.P., Boersma, B.J. & Uittenbogaard, R.E. 2006 The influence of wall permeability on turbulent channel flow. J. Fluid Mech. 562, 3572.10.1017/S0022112006000887CrossRefGoogle Scholar
Davit, Y., Debenest, G., Wood, B.D. & Quintard, M. 2010 Modeling non-equilibrium mass transport in biologically reactive porous media. Adv. Water Resour. 33 (9), 10751093.10.1016/j.advwatres.2010.06.013CrossRefGoogle Scholar
Givler, R. & Altobelli, S. 1994 A determination of the effective viscosity for the Brinkman–Forchheimer flow model. J. Fluid Mech. 258, 355370.10.1017/S0022112094003368CrossRefGoogle Scholar
Irmay, S. 1958 On the theoretical derivation of Darcy and Forchheimer formulas. EOS Trans. AGU 39 (4), 702707.Google Scholar
Jin, Y., Uth, M.F., Kuznetsov, A.V. & Herwig, H. 2015 Numerical investigation of the possibility of macroscopic turbulence in porous media: a direct numerical simulation study. J. Fluid Mech. 766, 76103.10.1017/jfm.2015.9CrossRefGoogle Scholar
Kaviany, M. 2012 Principles of Heat Transfer in Porous Media. Springer Science & Business Media.Google Scholar
Kuznetsov, I.A. & Kuznetsov, A.V. 2017 Using resampling residuals for estimating confidence intervals of the effective viscosity and Forchheimer coefficient. Transp. Porous Med. 119, 451459.10.1007/s11242-017-0892-2CrossRefGoogle Scholar
Lasseux, D., Valdés-Parada, F.J. & Bellet, F. 2019 Macroscopic model for unsteady flow in porous media. J. Fluid Mech. 862, 283311.10.1017/jfm.2018.878CrossRefGoogle Scholar
de Lemos, M.J.S. 2005 The double-decomposition concept for turbulent transport in porous media. In Transport Phenomena in Porous Media (ed. D.B. Ingham & l. Pop), vol. III, pp. 133. Elsevier Ltd.Google Scholar
de Lemos, M.J.S. 2012 a Turbulence in Porous Media: Modeling and Applications. Elsevier.Google Scholar
de Lemos, M.J.S. 2012 b Turbulent Impinging Jets into Porous Materials. Springer Science & Business Media.10.1007/978-3-642-28276-8CrossRefGoogle Scholar
Masuoka, T. & Takatsu, Y. 1996 Turbulence model for flow through porous media. Intl J. Heat Mass Transfer 39 (13), 28032809.10.1016/0017-9310(95)00353-3CrossRefGoogle Scholar
Nakayama, A., Kuwahara, F., Sugiyama, M. & Xu, G. 2001 A two-energy equation model for conduction and convection in porous media. Intl J. Heat Mass Transfer 44 (22), 43754379.10.1016/S0017-9310(01)00069-2CrossRefGoogle Scholar
Nield, D.A. & Bejan, A. 2006 Convection in Porous Media. Springer.Google Scholar
Pope, S.B. 2001 Turbulent flows. Meas. Sci. Technol. 12 (11), 20202021.10.1088/0957-0233/12/11/705CrossRefGoogle Scholar
Quintard, M., Cherblanc, F. & Whitaker, S. 2001 Dispersion in heterogeneous porous media: one-equation non-equilibrium model. Transp. Porous Med. 44, 181203.10.1023/A:1010746011296CrossRefGoogle Scholar
Rao, F. 2022 Direct numerical simulation and macroscopic modeling of turbulent flows in porous media. Thesis, Universität Bremen, Germany.Google Scholar
Rao, F. & Jin, Y. 2022 Possibility for survival of macroscopic turbulence in porous media with high porosity. J. Fluid Mech. 937, A17.10.1017/jfm.2022.87CrossRefGoogle Scholar
Rao, F., Kuznetsov, A.V. & Jin, Y. 2020 Numerical modeling of momentum dispersion in porous media based on the pore scale prevalence hypothesis. Transp. Porous Med. 133 (2), 271292.10.1007/s11242-020-01423-yCrossRefGoogle Scholar
Rao, F. & Zhang, S. 2025 a Heat–fluid–solid coupling model for turbulent forced convection within porous media. Phys. Rev. Fluids 10 (6), 064502.10.1103/67vg-cfqbCrossRefGoogle Scholar
Rao, F. & Zhang, S. 2025 b The in-depth analysis and validation of momentum dispersion modeling based on direct numerical simulation. Phys. Fluids 37 (1), 015142.10.1063/5.0247145CrossRefGoogle Scholar
Rebhi, R., Menni, Y., Lorenzini, G. & Ahmad, H. 2022 Forced-convection heat transfer in solar collectors and heat exchangers: a review. J. Adv. Res. Appl. Sci. Engng Technol. 26 (3), 115.10.37934/araset.26.3.115CrossRefGoogle Scholar
Saito, M.B. & de Lemos, M.J.S. 2005 Interfacial heat transfer coefficient for non-equilibrium convective transport in porous media. Intl Commun. Heat Mass Transfer 32 (5), 666676.10.1016/j.icheatmasstransfer.2004.06.013CrossRefGoogle Scholar
Saito, M.B. & de Lemos, M.J.S. 2006 A correlation for interfacial heat transfer coefficient for turbulent flow over an array of square rods. J. Heat Transfer 128 (5), 444452.10.1115/1.2175150CrossRefGoogle Scholar
Samantray, P.K., Karthikeyan, P. & Reddy, K. 2006 Estimating effective thermal conductivity of two-phase materials. Intl J. Heat Mass Transfer 49 (21–22), 42094219.10.1016/j.ijheatmasstransfer.2006.03.015CrossRefGoogle Scholar
Tam, C.K.W. 1969 The drag on a cloud of spherical particles in low Reynolds number flow. J. Fluid Mech. 38 (3), 537546.10.1017/S0022112069000322CrossRefGoogle Scholar
Valdes-Parada, F.J., Alberto Ochoa-Tapia, J. & Alvarez-Ramirez, J. 2007 On the effective viscosity for the Darcy–Brinkman equation. Physica A 385 (1), 6979.10.1016/j.physa.2007.06.012CrossRefGoogle Scholar
Whitaker, S. 1986 Flow in porous media I: a theoretical derivation of Darcy’s law. Transp. Porous Med. 1, 325.10.1007/BF01036523CrossRefGoogle Scholar
Wood, B.D., He, X. & Apte, S.V. 2020 Modeling turbulent flows in porous media. Annu. Rev. Fluid Mech. 52, 171203.10.1146/annurev-fluid-010719-060317CrossRefGoogle Scholar