Alemi Ardakani, H.2010 Rigid-body motion with interior shallow-water sloshing. PhD thesis, University of Surrey, UK.
Alemi Ardakani, H. & Bridges, T. J.
2012
Shallow-water sloshing in vessels undergoing prescribed rigid-body motion in two dimensions. Eur. J. Mech. (B/Fluids)
31, 30–43.
Bokhove, O. & Kalogirou, A.
2016
Variational Water Wave Modelling: from Continuum to Experiment (ed. Bridges, T. J., Groves, M. D. & Nicholls, D. P.), Lecture Notes on the Theory of Water Waves, LMS Lecture Notes, vol. 426, pp. 226–259. Cambridge University Press.
Broer, L. J. F.
1974
On the Hamiltonian theory for surface waves. Appl. Sci. Res.
29, 430–446.
van Daalen, E. F. G.1993 Numerical and theoretical studies of water waves and floating bodies. PhD thesis, University of Twente, Netherlands.
van Daalen, E. F. G., van Groesen, E. & Zandbergen, P. J.
1993
A Hamiltonian formulation for nonlinear wave–body interactions. In Proceedings of the Eighth International Workshop on Water Waves and Floating Bodies, Canada, pp. 159–163. Available at http://www.iwwwfb.org/Workshops/08.htm.
Daniliuk, I. I.
1976
On integral functionals with a variable domain of integration. In Proceedings of the Steklov Institute of Mathematics, vol. 118, pp. 1–144. American Mathematical Society.
Flanders, H.
1973
Differentiation under the integral sign. Am. Math. Mon.
80, 615–627.
Gagarina, E., Ambati, V. R., Nurijanyan, S., van der Vegt, J. J. W. & Bokhove, O.
2016
On variational and symplectic time integrators for Hamiltonian systems. J. Comput. Phys.
306, 370–389.
Gagarina, E., Ambati, V. R., van der Vegt, J. J. W. & Bokhove, O.
2014
Variational space–time (dis)continuous Galerkin method for nonlinear free surface water waves. J. Comput. Phys.
275, 459–483.
Gagarina, E., van der Vegt, J. & Bokhove, O.
2013
Horizontal circulation and jumps in Hamiltonian wave models. Nonlinear Process. Geophys.
20, 483–500.
van Groesen, E. & Andonowati
2017
Hamiltonian Boussinesq formulation of wave–ship interactions. Appl. Math. Model.
42, 133–144.
Kalogirou, A. & Bokhove, O.
2016
Mathematical and numerical modelling of wave impact on wave-energy buoys. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, p. 8. The American Society of Mechanical Engineers.
Luke, J. C.
1967
A variational principle for a fluid with a free surface. J. Fluid Mech.
27, 395–397.
Miles, J. W.
1977
On Hamilton’s principle for surface waves. J. Fluid Mech.
83, 153–158.
Miloh, T.
1984
Hamilton’s principle, Lagrange’s method, and ship motion theory. J. Ship Res.
28, 229–237.
Zakharov, V. E.
1968
Stability of periodic waves of finite-amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys.
9, 190–194.