Hostname: page-component-cb9f654ff-9b74x Total loading time: 0 Render date: 2025-08-24T03:52:30.063Z Has data issue: false hasContentIssue false

Coupling and synchronisation effects on local lock-in of two thermoacoustic oscillators in a stochastic environment

Published online by Cambridge University Press:  22 August 2025

Minwoo Lee*
Affiliation:
Department of Mechanical Engineering, Hanbat National University, 125 Dongseodaero, Daejeon, Yuseong 34158, South Korea
*
Corresponding author: Minwoo Lee, mwlee@hanbat.ac.kr

Abstract

Flame–flame interactions in continuous combustion systems can induce a range of nonlinear dynamical behaviours, particularly in the thermoacoustic context. This study examines the mutual coupling and synchronisation dynamics of two thermoacoustic oscillators in a model gas-turbine combustor operating within a stochastic environment and subjected to external sinusoidal forcing. Experimental observations from two flames in an annular combustor reveal the emergence of dissimilar limit cycles, indicating localised lock-in of thermoacoustic oscillators. To interpret these dynamics, we introduce a coupled stochastic oscillator model with sinusoidal forcing terms, which highlights the critical role of individual synchronisation in enabling local lock-in. Furthermore, through stochastic system identification using this phenomenological low-order model, we mathematically demonstrate that a transition towards self-sustained oscillations can be driven solely by enhanced mutual coupling under external forcing. This combined experimental and modelling effort offers a novel framework for characterising complex coupled flame dynamics in practical combustion systems.

Information

Type
JFM Rapids
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Bélair, J. & Holmes, P. 1984 On linearly coupled relaxation oscillations. Q. Appl. Maths 42 (2), 193219.10.1090/qam/745099CrossRefGoogle Scholar
Biwa, T., Tozuka, S. & Yazaki, T. 2015 Amplitude death in coupled thermoacoustic oscillators. Phys. Rev. Appl. 3 (3), 034006.10.1103/PhysRevApplied.3.034006CrossRefGoogle Scholar
Bonciolini, G., Faure-Beaulieu, A., Bourquard, C. & Noiray, N. 2021 Low order modelling of thermoacoustic instabilities and intermittency: flame response delay and nonlinearity. Combust. Flame 226, 396411.10.1016/j.combustflame.2020.12.034CrossRefGoogle Scholar
Bonciolini, G. & Noiray, N. 2019 Synchronization of thermoacoustic modes in sequential combustors. J. Engng Gas Turb. Power 141 (3), 031010.10.1115/1.4041027CrossRefGoogle Scholar
Boujo, E. & Noiray, N. 2017 Robust identification of harmonic oscillator parameters using the adjoint Fokker–Planck equation. Proc. R. Soc. Lond. A 473 (2200), 20160894.Google ScholarPubMed
Culick, F.E.C., Paparizos, L., Sterling, J. & Burnley, V. 1992 Combustion noise and combustion instabilities in propulsion systems, Tech. Rep. AGARD N93-10666 01-71, NATO Research and Technology Organization.Google Scholar
Dange, S., Manoj, K., Banerjee, S., Pawar, S.A., Mondal, S. & Sujith, R.I. 2019 a Oscillation quenching and phase-flip bifurcation in coupled thermoacoustic systems. Chaos 29 (9), 093135.10.1063/1.5114695CrossRefGoogle ScholarPubMed
Dange, S., Pawar, S.A., Manoj, K. & Sujith, R.I. 2019 b Role of buoyancy-driven vortices in inducing different modes of coupled behaviour in candle-flame oscillators. AIP Adv. 9 (1), 015119.10.1063/1.5078674CrossRefGoogle Scholar
Fraser, A.M. & Swinney, H.L. 1986 Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33 (2), 1134.10.1103/PhysRevA.33.1134CrossRefGoogle ScholarPubMed
Guan, Y., Choi, Y., Liu, P. & Kim, K.T. 2024 Mutual synchronization and flame dynamics in an axially fuel-staged lean-premixed combustion system. Proc. Combust. Inst. 40 (1–4), 105197.10.1016/j.proci.2024.105197CrossRefGoogle Scholar
Guan, Y., Moon, K., Kim, K.T. & Li, L.K.B. 2021 Low-order modeling of the mutual synchronization between two turbulent thermoacoustic oscillators. Phys. Rev. E 104 (2), 024216.10.1103/PhysRevE.104.024216CrossRefGoogle ScholarPubMed
Guk, S., Seo, S. & Lee, M. 2024 An image-based spatiotemporal approach for detecting coherence resonance in annular model gas-turbine combustor. Phys. Fluids 36 (5), 054121.10.1063/5.0208950CrossRefGoogle Scholar
Kashinath, K., Li, L.K.B. & Juniper, M.P. 2018 Forced synchronization of periodic and aperiodic thermoacoustic oscillations: lock-in, bifurcations and open-loop control. J. Fluid Mech. 838, 690714.10.1017/jfm.2017.879CrossRefGoogle Scholar
Kitahata, H., Taguchi, J., Nagayama, M., Sakurai, T., Ikura, Y., Osa, A., Sumino, Y., Tanaka, M., Yokoyama, E. & Miike, H. 2009 Oscillation and synchronization in the combustion of candles. J. Phys. Chem. A 113 (29), 81648168.10.1021/jp901487eCrossRefGoogle ScholarPubMed
Lee, M., Guan, Y., Gupta, V. & Li, L.K.B. 2020 Input–output system identification of a thermoacoustic oscillator near a Hopf bifurcation using only fixed-point data. Phys. Rev. E 101 (1), 013102.10.1103/PhysRevE.101.013102CrossRefGoogle Scholar
Lee, M., Gupta, V. & Li, L.K.B. 2024 Fokker–Planck dynamics of two coupled van der Pol oscillators subjected to stochastic forcing. Phys. Rev. E 110 (4), 044202.10.1103/PhysRevE.110.044202CrossRefGoogle Scholar
Lee, M., Kim, K.T. & Park, J. 2023 A numerically efficient output-only system-identification framework for stochastically forced self-sustained oscillators. Probab. Engng Mech. 74, 103516.10.1016/j.probengmech.2023.103516CrossRefGoogle Scholar
Lee, M., Zhu, Y., Li, L.K.B. & Gupta, V. 2019 System identification of a low-density jet via its noise-induced dynamics. J. Fluid Mech. 862, 200215.10.1017/jfm.2018.961CrossRefGoogle Scholar
Lieuwen, T.C. & Yang, V. 2005 Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling. American Institute of Aeronautics and Astronautics.Google Scholar
Manoj, K., Pawar, S.A. & Sujith, R.I. 2018 Experimental evidence of amplitude death and phase-flip bifurcation between in-phase and anti-phase synchronization. Sci. Rep. 8 (1), 11626.10.1038/s41598-018-30026-3CrossRefGoogle ScholarPubMed
Marquardt, D.W. 1963 An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Indust. Appl. Maths 11 (2), 431441.10.1137/0111030CrossRefGoogle Scholar
Moon, K., Guan, Y., Li, L.K.B. & Kim, K.T. 2020 Mutual synchronization of two flame-driven thermoacoustic oscillators: dissipative and time-delayed coupling effects. Chaos 30 (2), 023110.10.1063/1.5126765CrossRefGoogle ScholarPubMed
Noiray, N. & Schuermans, B. 2013 Deterministic quantities characterizing noise driven Hopf bifurcations in gas turbine combustors. Intl J. Non-Linear Mech. 50, 152163.10.1016/j.ijnonlinmec.2012.11.008CrossRefGoogle Scholar
O’Connor, J., Acharya, V. & Lieuwen, T. 2015 Transverse combustion instabilities: acoustic, fluid mechanic, and flame processes. Prog. Energy Combust. Sci. 49, 139.10.1016/j.pecs.2015.01.001CrossRefGoogle Scholar
Orchini, A. & Moeck, J.P. 2024 Weakly nonlinear analysis of thermoacoustic oscillations in can-annular combustors. J. Fluid Mech. 980, A52.10.1017/jfm.2024.4CrossRefGoogle Scholar
Roberts, J.B. & Spanos, P.D. 1986 Stochastic averaging: an approximate method of solving random vibration problems. Intl J. Nonlinear Mech. 21 (2), 111134.10.1016/0020-7462(86)90025-9CrossRefGoogle Scholar
Son, H. & Lee, M. 2024 A PINN approach for identifying governing parameters of noisy thermoacoustic systems. J. Fluid Mech. 984, A21.10.1017/jfm.2024.219CrossRefGoogle Scholar
Sujith, R.I. & Unni, V.R. 2021 Dynamical systems and complex systems theory to study unsteady combustion. Proc. Combust. Inst. 38 (3), 34453462.10.1016/j.proci.2020.07.081CrossRefGoogle Scholar
Takagi, K., Gotoda, H., Miyano, T., Murayama, S. & Tokuda, I.T. 2018 Synchronization of two coupled turbulent fires. Chaos 28 (4), 045116.10.1063/1.5009896CrossRefGoogle ScholarPubMed
Takens, F. 1981 Detecting strange attractors in turbulence. Lecture Notes Maths 898, 366381.10.1007/BFb0091924CrossRefGoogle Scholar
Thomas, N., Mondal, S., Pawar, S.A. & Sujith, R.I. 2018 a Effect of noise amplification during the transition to amplitude death in coupled thermoacoustic oscillators. Chaos 28 (9), 093116.10.1063/1.5040561CrossRefGoogle ScholarPubMed
Thomas, N., Mondal, S., Pawar, S.A. & Sujith, R.I. 2018 b Effect of time-delay and dissipative coupling on amplitude death in coupled thermoacoustic oscillators. Chaos 28 (3), 033119.10.1063/1.5009999CrossRefGoogle ScholarPubMed
Worth, N.A. & Dawson, J.R. 2013 a Modal dynamics of self-excited azimuthal instabilities in an annular combustion chamber. Combust. Flame 160 (11), 24762489.10.1016/j.combustflame.2013.04.031CrossRefGoogle Scholar
Worth, N.A. & Dawson, J.R. 2013 b Self-excited circumferential instabilities in a model annular gas turbine combustor: global flame dynamics. Proc. Combust. Inst. 34 (2), 31273134.10.1016/j.proci.2012.05.061CrossRefGoogle Scholar